WEIL'S BOUND FOR KLOOSTERMAN SUMS

GERGELY HARCOS

1. INTRODUCTION

The aim of these notes is to give a concise but self-contained proof of the following celebrated theorem due to Weil [\[5\]](#page-13-0).

Theorem 1 (Weil). Let $p > 2$ be a prime number. Let a and b be integers coprime to p. *Then the Kloosterman sum*

$$
S(a, b; p) := \sum_{t=1}^{p-1} e_p(at + b\bar{t})
$$

has absolute value at most 2 [√]*p.*

Here $e_p(x)$ abbreviates $exp(2\pi ix/p)$, and \bar{t} is a multiplicative inverse of *t* modulo *p*. We denote by \mathbb{F}_p the *p*-element field, and we identify its elements with the residue classes modulo *p*. Hence $e_p(x)$ is a nontrivial additive character of \mathbb{F}_p , and we can write

(1)
$$
S(a,b;p) = \sum_{t \in \mathbb{F}_p^{\times}} e_p(at + bt^{-1}).
$$

We fix p , a , b for the rest of the notes, except that in the next section p is an arbitrary prime.

Our exposition is largely based on Iwaniec–Kowalski [\[2,](#page-13-1) Chapter 11], but we try to give more detail at certain points and keep the algebraic prerequisites to a minimum. A rough outline of the proof is as follows. Along with $S(a,b;p)$, we consider all the Kloosterman sums $S(ma, mb; p)$ with $1 \leq m \leq p-1$, and we write them as

$$
S(ma, mb; p) = -\alpha_m - \beta_m
$$

with complex numbers α_m and β_m such that $\alpha_m \beta_m = p$. That is, we have a decomposition of polynomials in $\mathbb{C}[T]$,

(2)
$$
1 + S(ma, mb; p)T + pT^2 = (1 - \alpha_m T)(1 - \beta_m T).
$$

It turns out that the power sums of the α_m 's and β_m 's have a geometric meaning, namely

(3)
$$
p^{n}-1-\sum_{m=1}^{p-1}(\alpha_{m}^{n}+\beta_{m}^{n})=|\{(x,y)\in\mathbb{F}_{p^{n}}\times\mathbb{F}_{p^{n}}:\ y^{2}=(x^{p}-x)^{2}-4ab\}|,
$$

where \mathbb{F}_{p^n} denotes the field of p^n elements. Weil showed [\[6,](#page-13-2) p. 70] that the right hand side can be approximated as $p^n + O_p(p^{n/2})$, hence for any integer $n \ge 1$ we have

$$
\sum_{m=1}^{p-1} (\alpha_m^n + \beta_m^n) \ll_p p^{n/2}.
$$

It is straightforward to deduce from here that each α_m and β_m has absolute value \sqrt{p} , and Theorem [1](#page-0-0) follows upon noting $|S(a,b;p)| \leq |\alpha_1| + |\beta_1|$.

2. BACKGROUND ON FINITE FIELDS

Lemma 1. *Let F be a field, and let* $k(X) \in F[X]$ *be an irreducible polynomial. Then there is a field G containing F such that k has a root in G.*

Proof. It suffices to construct a field *G* such that *F* embeds into *G*, and *k* has a root in *G*. The residue classes in *F*[*X*] modulo $k(X)$ form a ring $G := F[X]/(k(X))$. We claim that *G* is a field satisfying the requirements. Clearly, the inclusion $F \subset F[X]$ induces an embedding $F \hookrightarrow G$. If $\xi \in G$ denotes the residue class of *X* modulo $k(X)$, then $k(\xi) \in G$ is the residue class of $k(X)$ modulo $k(X)$, i.e. $k(\xi) = 0$. Now let $a(X)$ mod *k*(*X*) be any nonzero residue class in *G*, i.e. *a*(*X*) ∈ *F*[*X*] is not divisible by *k*(*X*). Using the Euclidean algorithm in *F*[*X*], we can find polynomials $b(X)$, $l(X) \in F[X]$ such that $a(X)b(X) - k(X)l(X) = 1$. More precisely, the Euclidean algorithm finds a nonzero polynomial of the form $a(X)b(X) - k(X)l(X)$ whose divisors are the common divisors of $a(X)$ and $k(X)$. As $k(X)$ is irreducible, and $a(X)$ is not divisible by $k(X)$, the polynomial $a(X)b(X) - k(X)l(X)$ is a nonzero constant. Dividing $b(X)$ and $l(X)$ by this nonzero constant, we can achieve $a(X)b(X) - k(X)l(X) = 1$. This means that $b(X)$ mod $k(X)$ is a multiplicative inverse of $a(X)$ mod $k(X)$, hence *G* is a field.

Definition 1. If $F \subset G$ are fields and $\xi \in G$, then $F(\xi)$ denotes the smallest subfield of *G* containing *F* and ξ . The element $\xi \in G$ is called *algebraic* over *F* if $k(\xi) = 0$ for some non-constant $k(X) \in F[X]$. In this case the unique monic polynomial $k(X) \in F[X]$ of smallest positive degree such that $k(\xi) = 0$ is called the *minimal polynomial* of ξ over *F*.

Lemma 2. Let $F \subset G$ be any fields. Let $\xi \in G$ be algebraic over F with minimal polyno*mial* $k(X) \in F[X]$ *. Then* $k(X)$ *is irreducible in* $F[X]$ *, and* $F(\xi)$ *is isomorphic to* $F[X]/(k(X))$ *.*

Proof. If $k(X)$ is reducible in $F[X]$, then it factors into smaller degree monic polynomials $k(X) = u(X)v(X)$. As $k(\xi) = 0$, we have $u(\xi) = 0$ or $v(\xi) = 0$, a contradiction. So $k(X)$ is irreducible in $F[X]$. Moreover, using the Euclidean algorithm in $F[X]$, we see that a polynomial $a(X) \in F[X]$ satisfies $a(\xi) = 0$ if and only if $a(X)$ is divisible by $k(X)$ in *F*[*X*]. Consider now *F*[ξ], the smallest subring of *G* containing *F* and ξ . Consider also the map $f : F[X]/(k(X)) \to F[\xi]$ assigning to any residue class $a(X)$ mod $k(X)$ the element $a(\xi) \in F[\xi]$. It is straightforward to verify that *f* is a ring isomorphism, hence $F[\xi]$ is isomorphic to $F[X]/(k(X))$. The latter ring is actually a field (cf. proof of Lemma [1\)](#page-1-0), hence *F*[ξ] is a field. It follows that $F(\xi) = F[\xi]$, and so $F(\xi)$ is isomorphic to $F[X]/(k(X))$. \Box

Lemma 3. *Let* $F \subset G$ *be any fields. If* F *is a finite field of cardinality m, then*

$$
F = \{x \in G: x^m = x\}.
$$

Proof. If $x \in F^{\times}$, then $x^{m-1} = 1$, because F^{\times} is a finite group of order $m-1$. Hence for any $x \in F$ we have $x^m = x$, i.e. $F \subset \{x \in G : x^m = x\}$. We must have equality here, because the left hand side has cardinality *m*, and the right hand side has cardinality at most *m*. \square

Lemma 4. Let F be a field, and let H be a finite subgroup of the multiplicative group F^{\times} . *Then H is cyclic.*

Proof. Let $x \in H$ and $y \in H$ be any two group elements of (multiplicative) orders *r* and *s*, respectively. We claim that *H* contains an element of order [*r*,*s*]. To see this, decompose [*r*,*s*] as *ab* with suitable *a* | *r* and *b* | *s* such that $(a,b) = 1$, and consider $z := x^{r/a}y^{s/b} \in H$. The order *t* of *z* clearly divides *ab*, because $z^{ab} = x^{rb}y^{sa} = 1$. On the other hand, $z^t = 1$ implies $z^{at} = 1$ and $z^{bt} = 1$, whence $y^{ats/b} = 1$ and $x^{btr/a} = 1$. This is only possible if *b* | *at* and *a* | *bt*, i.e. *ab* | *t*. Hence $t = ab = [r, s]$ as claimed. Now pick $x \in H$ so that its order *r* is maximal. Then any $y \in H$ has order $s | r$, because $[r, s] \leq r$ implies $s | r$. Fixing y and s, we observe that in *F* the equation $t^s = 1$ has at most *s* solutions, and *y* is one of them. On the other hand, $x^{kr/s}$ ($1 \le k \le s$) are *s* distinct elements satisfying $t^s = 1$, hence *y* must be one these elements. That is, *x* generates *H*, and we are done. **Lemma 5.** Let $F \subset G$ be any finite fields. Then there exists $\xi \in G$ such that $F(\xi) = G$.

Proof. By Lemma [4,](#page-1-1) the multiplicative group G^{\times} is generated by some $\xi \in G$. Then $F(\xi)$ clearly contains G^{\times} , hence $F(\xi) = G$.

Theorem 2. *The cardinality of any finite field is a prime power pⁿ . Conversely, for any prime power pⁿ , there is a finite field of cardinality pⁿ , and it is unique up to isomorphism.*

Proof. Let *F* be any finite field. The elements 1, $1 + 1$, $1 + 1 + 1$, etc. in *F* cannot all be distinct. Hence, after subtraction, we see that in *F* we have $m \cdot 1 = 0$ for some positive integer *m*. If *m* is minimal with this property, then *m* is prime. Indeed, if $m = kl$ with $0 < k, l < m$, then $(k \cdot 1)(l \cdot 1) = m \cdot 1 = 0$, hence $k \cdot 1 = 0$ or $l \cdot 1 = 0$, a contradiction. So $m = p$ is prime, and we can embed \mathbb{F}_p into *F* by mapping a residue class *t* mod *p* in \mathbb{F}_p to *t* · 1 ∈ *F*. We call \mathbb{F}_p the *prime field* of *F*. In particular, *F* is a vector space over \mathbb{F}_p of some finite dimension *n*, hence $|F| = p^n$ is a prime power.

Conversely, let p^n be any prime power. We construct a field F_n of cardinality p^n , and in the next paragraph we show that any field of cardinality p^n is isomorphic to F_n . There is a field *K* containing \mathbb{F}_p such that any polynomial in $\mathbb{F}_p[X]$ decomposes into linear factors over *K*. To see this, enumerate the polynomials in $\mathbb{F}_p[X]$, and use Lemma [1](#page-1-0) recursively to construct a chain of fields

$$
\mathbb{F}_p = K_0 \subset K_1 \subset K_2 \subset \dots
$$

such that in K_m the *m*-th polynomial decomposes into linear factors, and then define *K* as the union of these fields. Now we put

(4)
$$
F_n := \{x \in K : x^{p^n} = x\},\
$$

and we claim that F_n is a p^n -element subfield of *K* containing \mathbb{F}_p . On the one hand, in $K[X]$ we have a decomposition

(5)
$$
X^{p^n} - X = \prod_{i=1}^{p^n} (X - t_i),
$$

and F_n is the set of roots $\{t_i: 1 \leq i \leq p^n\}$. The roots are distinct, because the formal derivative of the left hand side, $(X^{p^n} - X)' = p^n X^{p^n - 1} - 1 = -1$, has no root. This proves that $|F_n| = p^n$. On the other hand, F_n is the set of fixed points of σ^n , where

$$
(6) \qquad \qquad \sigma: x \mapsto x^p
$$

denotes the *Frobenius map* on *K*. Clearly, $\sigma(0) = 0$, $\sigma(1) = 1$, $\sigma(xy) = \sigma(x)\sigma(y)$. Moreover, by the binomial theorem, $\sigma(x+y) = \sigma(x) + \sigma(y)$. Therefore, σ is a field endomorphism of *K* fixing \mathbb{F}_p pointwise, and the same is true of σ^n . Hence F_n is a subfield of *K* containing F*p*.

Let *F* be any field of cardinality p^n . Then the prime field of *F* must be \mathbb{F}_p , hence without loss of generality, *F* contains \mathbb{F}_p . By Lemma [5,](#page-2-0) there exists $\xi \in F$ such that $\mathbb{F}_p(\xi) = F$. Let $k(X) \in \mathbb{F}_p[X]$ be the minimal polynomial of ξ over \mathbb{F}_p . Then $k(X)$ has a root α in *K*. The minimal polynomial of α over \mathbb{F}_p divides $k(X)$ in $\mathbb{F}_p[X]$ (cf. proof of Lemma [2\)](#page-1-2), therefore it equals $k(X)$ by the irreducibility of $k(X)$. It follows that $\mathbb{F}_p(\xi)$ is isomorphic to the subfield $\mathbb{F}_p(\alpha) \subset K$, because both fields are isomorphic to $\mathbb{F}_p[X]/(k(X))$ by Lemma [2.](#page-1-2) In particular, $\mathbb{F}_p(\alpha)$ has cardinality p^n , hence it equals F_n by Lemma [3.](#page-1-3) In the end, we see that *F* is isomorphic to *F_n*, namely $F = \mathbb{F}_p(\xi) \cong \mathbb{F}_p[X]/(k(X)) \cong \mathbb{F}_p(\alpha) = F_n$.

Definition 2. We identify \mathbb{F}_{p^n} with F_n defined by [\(4\)](#page-2-1), and we regard their union

$$
\overline{\mathbb{F}_p} := \bigcup_{n=1}^{\infty} \mathbb{F}_{p^n}.
$$

Corollary 1. The fields \mathbb{F}_{p^n} are precisely the finite subfields of $\overline{\mathbb{F}_p}$. Moreover, $\mathbb{F}_{p^m} \subset \mathbb{F}_{p^n}$ *if and only m* $\mid n$.

Proof. By definition, $\mathbb{F}_{p^n} \subset \overline{\mathbb{F}_p}$. Conversely, let *F* be a finite subfield of $\overline{\mathbb{F}_p}$. Then, *F* contains \mathbb{F}_p , hence *F* is a vector space over \mathbb{F}_p of some finite dimension *n*. It follows that $|F| = p^n$, therefore $F = \mathbb{F}_{p^n}$ by Lemma [3](#page-1-3) and [\(4\)](#page-2-1). Assume now that $\mathbb{F}_{p^m} \subset \mathbb{F}_{p^n}$. Then, \mathbb{F}_{p^n} is a vector space over \mathbb{F}_{p^m} of some finite dimension *k*, hence $p^n = \mathbb{F}_{p^n} = |\mathbb{F}_{p^m}|^k = p^{mk}$. That is, $n = mk$, i.e. $m \mid n$. Conversely, if $m \mid n$, then [\(4\)](#page-2-1) readily implies that $\mathbb{F}_{p^m} \subset \mathbb{F}_{p^n}$. \Box

In particular, any $\alpha \in \overline{\mathbb{F}_p}$ generates some finite field $\mathbb{F}_p(\alpha) = \mathbb{F}_{p^d}$, hence by [\(4\)](#page-2-1) and [\(6\)](#page-2-2) we see that $\overline{\mathbb{F}_p}$ is a disjoint union of *Frobenius orbits* of the form $\{\alpha, \sigma(\alpha), \ldots, \sigma^{d-1}(\alpha)\}.$ In fact, for a given integer $n \ge 1$, the orbits of size $d \mid n$ partition \mathbb{F}_{p^n} . The next result describes these orbits in more detail and shows that $\overline{\mathbb{F}_p}$ is an algebraic closure of \mathbb{F}_p .

Theorem 3. *A Frobenius orbit of size d in* $\overline{\mathbb{F}_p}$ *is the set of roots of an irreducible monic polynomial of degree d in* $\mathbb{F}_p[X]$ *, and vice versa.*

Proof. The proof relies on the fact that \mathbb{F}_p is the set of fixed points of σ in $\overline{\mathbb{F}_p}$. Let $\{\alpha,\sigma(\alpha),\ldots,\sigma^{d-1}(\alpha)\}\subset\overline{\mathbb{F}_p}$ be a Frobenius orbit of size *d*, i.e. $\sigma^d(\alpha)=\alpha$ and the listed elements are distinct. Then the monic polynomial

$$
k(X) := \prod_{i=0}^{d-1} (X - \sigma^i(\alpha))
$$

lies in $\mathbb{F}_p[X]$, because σ permutes the roots and therefore fixes the coefficients of $k(X)$. Moreover, $\{\alpha,\sigma(\alpha),\ldots,\sigma^{d-1}(\alpha)\}$ is not the disjoint union of two non-empty σ -invariant subsets, hence $k(X)$ is irreducible in $\mathbb{F}_p[X]$. Conversely, let $k(X) \in \mathbb{F}_p[X]$ be an irreducible monic polynomial of degree *d*. Then, as we have seen in the proof of Theorem [2,](#page-2-3) *k*(*X*) has a root $\alpha \in \mathbb{F}_{p^d}$, and in fact $\mathbb{F}_p(\alpha) = \mathbb{F}_{p^d}$. Hence $\{\alpha, \sigma(\alpha), \dots, \sigma^{d-1}(\alpha)\}$ is a Frobenius orbit of size *d* in $\overline{\mathbb{F}_p}$, i.e. $\sigma^d(\alpha) = \alpha$ and the listed elements are distinct. Each element $\sigma^i(\alpha)$ is a root of $k(X)$, because $k(\sigma^i(\alpha)) = \sigma^i(k(\alpha)) = \sigma^i(0) = 0$, therefore the orbit is the set of roots of $k(X)$.

Corollary 2 (Gauss). *For any integer* $n \ge 1$ *, we have the following identity in* $\mathbb{F}_p[X]$:

$$
X^{p^n} - X = \prod_{d|n} \prod_{\substack{k \text{ irred. monic} \\ \deg(k) = d}} k(X),
$$

where the inner product runs through the irreducible monic polynomials of degree d in $\mathbb{F}_p[X]$.

Proof. We have seen in the proof of Theorem [2](#page-2-3) that over \mathbb{F}_{p^n} the left hand side decomposes into distinct linear factors as (cf. [\(5\)](#page-2-4))

$$
X^{p^n} - X = \prod_{t \in \mathbb{F}_{p^n}} (X - t).
$$

The field \mathbb{F}_{p^n} is a disjoint union of the Frobenius orbits of size $d \mid n$, hence the stated identity follows immediately from Theorem [3.](#page-3-0) \Box

Definition 3. The *n*-trace of an element $\alpha \in \mathbb{F}_{p^n}$ is given by

$$
\mathrm{Tr}_n(\alpha) := \sum_{i=0}^{n-1} \sigma^i(\alpha).
$$

Theorem 4. The n-trace is an \mathbb{F}_p -linear surjection $\text{Tr}_n : \mathbb{F}_{p^n} \to \mathbb{F}_p$. Moreover, for any $y \in \mathbb{F}_{p^n}$ *, we have*

(7)
$$
|\{x \in \mathbb{F}_{p^n} : x^p - x = y\}| = \begin{cases} 0, & \text{Tr}_n(y) \neq 0; \\ p, & \text{Tr}_n(y) = 0. \end{cases}
$$

Proof. For any $\alpha \in \mathbb{F}_{p^n}$, we have $\sigma^n(\alpha) = \alpha$, hence

$$
\sigma(\mathrm{Tr}_n(\alpha))=\sum_{i=0}^{n-1}\sigma^{i+1}(\alpha)=\mathrm{Tr}_n(\alpha).
$$

That is, $Tr_n(\alpha) \in \mathbb{F}_p$. In addition, the map $Tr_n : \mathbb{F}_{p^n} \to \mathbb{F}_p$ is \mathbb{F}_p -linear, because σ (hence also σ^i) is \mathbb{F}_p -linear. Consider now the \mathbb{F}_p -linear map $\delta : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ given by

$$
\delta(x) := x^p - x = \sigma(x) - x.
$$

The kernel of δ equals \mathbb{F}_p , hence δ is a *p*-to-1 map with an image of size $|\text{im }\delta| = p^{n-1}$. In addition, im $\delta \subset \ker \text{Tr}_n$, because for any $x \in \mathbb{F}_{p^n}$ we have

$$
\mathrm{Tr}_n(\delta(x)) = \mathrm{Tr}_n(\sigma(x) - x) = \sum_{i=0}^{n-1} (\sigma^{i+1}(x) - \sigma^i(x)) = \sigma^n(x) - x = 0.
$$

However, $\text{Tr}_n : \mathbb{F}_{p^n} \to \mathbb{F}_p$ is also a polynomial function of degree p^{n-1} by definition, hence it cannot vanish at more than p^{n-1} points. It follows that im $\delta = \text{kerTr}_n$. This verifies [\(7\)](#page-3-1) and the surjectivity of Tr_n as well, because $|\text{im Tr}_n| = p^n/|\text{ker Tr}_n| = p$.

Remark 1. Theorem [4](#page-3-2) and its proof can be summarized by saying that the following sequence of \mathbb{F}_p -linear maps is exact:

$$
0 \longrightarrow \mathbb{F}_p \xrightarrow{\text{id}} \mathbb{F}_{p^n} \xrightarrow{\delta} \mathbb{F}_{p^n} \xrightarrow{\text{Tr}_n} \mathbb{F}_p \longrightarrow 0.
$$

3. *L*-FUNCTIONS

In this section we prove the identity [\(3\)](#page-0-1) with the help of *L*-functions. Recall that the parameters $p, a, b \in \mathbb{Z}$ of Theorem [1](#page-0-0) are fixed, and the numbers $\alpha_m, \beta_m \in \mathbb{C}$ (1 $\leq m \leq p-1$) satisfy [\(2\)](#page-0-2).

The ring of polynomials $\mathbb{F}_p[X]$ bears a close similarity to the ring of integers \mathbb{Z} . We define a completely multiplicative function $\eta : \mathbb{F}_p[X] \to \mathbb{C}$ that is analogous to a Dirichlet character $\mathbb{Z} \to \mathbb{C}$.

Definition 4. Let $k(X) = c_0 X^d + \cdots + c_d \in \mathbb{F}_p[X]$ be a polynomial with $c_0 \neq 0 \neq c_d$. Then *k*(*X*) decomposes into linear factors over $\overline{\mathbb{F}_p}$ as $k(X) = c_0(X - t_1) \dots (X - t_d)$, and we put

$$
\eta(k) := e_p(a(t_1 + \dots + t_d))e_p(b(t_1^{-1} + \dots + t_d^{-1}))
$$

= $e_p(-a(c_1/c_0))e_p(-b(c_{d-1}/c_d)).$

For all other polynomials $k(X) \in \mathbb{F}_p[X]$ we put $\eta(k) := 0$.

Lemma 6. *We have*

- $|\eta(k)| \leq 1$ *for any* $k \in \mathbb{F}_p[X]$ *;*
- $\eta(k_1k_2) = \eta(k_1)\eta(k_2)$ *for any* $k_1, k_2 \in \mathbb{F}_p[X]$ *.*

Proof. Both statements are clear from the definition.

Definition 5. For any integer *m* coprime with *p*, we introduce the Dirichlet series

$$
L(s,\eta^m) := \sum_{k \text{ monic}} \eta^m(k) p^{-\deg(k)s}, \qquad \Re s > 1,
$$

where the sum runs through the monic polynomials in $\mathbb{F}_p[X]$.

Lemma 7. *The Dirichlet series L*(*s*,η *^m*) *converges absolutely and locally uniformly in the half-plane* ℜ*s* > 1*. In addition, we have the Euler product decomposition*

$$
L(s,\eta^m)=\prod_{\text{ }k\text{ }irred.\text{ monic}}\left(1-\eta^m(k)p^{-\deg(k)s}\right)^{-1},\qquad\Re s>1,
$$

which converges absolutely and locally uniformly in the half-plane $\Re s > 1$ *.*

Proof. Let $\sigma > 1$ be fixed. In the half-plane $\Re s \ge \sigma$ we have, by Lemma [6,](#page-4-0)

$$
\sum_{k \text{ monic}} \left| \eta^m(k)p^{-\deg(k)s} \right| \leqslant \sum_{k \text{ monic}} p^{-\deg(k)\sigma} = \sum_{d=1}^{\infty} p^{-d\sigma} \sum_{\substack{k \text{ monic} \\ \deg(k)=d}} 1 = \sum_{d=1}^{\infty} p^{d(1-\sigma)} < \infty,
$$

which implies the first claim. The second claim follows from the same bound coupled with the facts that $\mathbb{F}_p[X]$ is a unique factorization domain and $\eta^m : \mathbb{F}_p[X] \to \mathbb{C}$ is completely multiplicative (cf. Lemma [6\)](#page-4-0). The argument is very similar to the case of Dirichlet *L*functions, hence we omit the details.

Theorem 5. *The Dirichlet series* $L(s, \eta^m)$ *extends to an entire function satisfying*

 $L(s, \eta^m) = 1 + S(ma, mb; p)p^{-s} + p^{1-2s}$ $s \in \mathbb{C}$.

Proof. It suffices to prove that the above identity holds for $\Re s > 1$. So for the rest of the proof we assume that $\Re s > 1$, which will also take care of all convergence issues. Clearly,

$$
L(s, \eta^m) = \sum_{d=1}^{\infty} p^{-ds} \sum_{\substack{k \text{ monic} \\ \deg(k) = d}} \eta^m(k),
$$

hence we are led to evaluate the inner sum (cf. Definition [4\)](#page-4-1). Denoting this sum by a_d , it is obvious that $a_0 = 1$, while

$$
a_1 = \sum_{t \in \mathbb{F}_p} \eta^m(x - t) = \sum_{t \in \mathbb{F}_p^{\times}} e_p(mat) e_p(mbt^{-1}) = S(ma, mb; p).
$$

Regarding *a*2, we have

$$
a_2 = \sum_{c_1, c_2 \in \mathbb{F}_p} \eta^m(x^2 + c_1 x + c_2) = \sum_{c_1 \in \mathbb{F}_p} \sum_{c_2 \in \mathbb{F}_p^{\times}} e_p(-mac_1) e_p(-mb c_1/c_2)
$$

= $p - 1 + \sum_{c_1 \in \mathbb{F}_p^{\times}} e_p(-mac_1) \sum_{c_2 \in \mathbb{F}_p^{\times}} e_p(-mb c_1/c_2) = p - 1 + \left(\sum_{c \in \mathbb{F}_p^{\times}} e_p(c)\right)^2 = p$,

while for $d \geq 3$ we find

$$
a_d = \sum_{c_1, ..., c_d \in \mathbb{F}_p} \eta^m (x^d + c_1 x^{d-1} + \dots + c_d)
$$

=
$$
\sum_{c_d \in \mathbb{F}_p^{\times}} \sum_{c_1, ..., c_{d-1} \in \mathbb{F}_p} e_p(-mac_1) e_p(-mb c_{d-1}/c_d) = \sum_{c_d \in \mathbb{F}_p^{\times}} 0 = 0.
$$

We conclude that

$$
L(s, \eta^m) = \sum_{d=1}^{\infty} a_d p^{-ds} = 1 + S(ma, mb; p) p^{-s} + p^{1-2s}, \qquad \Re s > 1.
$$

The proof is complete.

Remark 2*.* Theorem [5](#page-5-0) implies (and in fact is equivalent to) the functional equation

$$
p^{s}L(s, \eta^{m}) = p^{1-s}L(1-s, \eta^{-m}).
$$

More generally, if ω is a Hecke character of a curve of genus *g* over \mathbb{F}_q , and f denotes the conductor of ω , then by Theorems 4 and 6 in [\[7,](#page-13-3) Chapter VII] we have

$$
N^{s/2}L(s, \omega) = \kappa N^{(1-s)/2}L(1-s, \omega^{-1}),
$$

where $N := q^{2g-2+\deg(f)}$, and κ is a complex number of modulus 1 depending only on ω . In our case $q = p$, $g = 0$, and $f = 2(0) + 2(\infty)$ is of degree 4, so that $N = p^2$.

Theorem 6. *For any integers* $1 \le m \le p-1$ *and* $n \ge 1$ *we have*

(8)
$$
-(\alpha_m^n + \beta_m^n) = \sum_{t \in \mathbb{F}_{p^n}^{\times}} e_p(m \operatorname{Tr}_n(at + bt^{-1})),
$$

where $\text{Tr}_n : \mathbb{F}_{p^n} \to \mathbb{F}_p$ *is the n-trace as in Definition [3.](#page-3-3)*

Proof. The idea is to analyze the logarithmic derivative of the identity

(9)
$$
(1 - \alpha_m p^{-s})(1 - \beta_m p^{-s}) = \prod_{k \text{ irred. monic}} \left(1 - \eta^m(k)p^{-\deg(k)s}\right)^{-1}, \quad \Re s > 1,
$$

that follows from Lemma [7,](#page-4-2) Theorem [5,](#page-5-0) and [\(2\)](#page-0-2) with $T := p^{-s}$. First of all, the left hand side is nonzero for ℜ*s* > 1 by the absolute convergence of the Euler product, hence $|\alpha_m|, |\beta_m| < p$ (this can also be verified directly). Therefore, on either side of [\(9\)](#page-6-0), the factors remain in the half-plane $\Re z > 0$, so that applying the principal branch of the logarithm on this half-plane yields

$$
\log(1-\alpha_m p^{-s})+\log(1-\beta_m p^{-s})=\sum_{k \text{ irred. monic}}-\log\left(1-\eta^m(k)p^{-\deg(k)s}\right),\qquad \Re s>1.
$$

Indeed, the two sides can only differ by a (constant) multiple of $2\pi i$, and then letting $s > 1$ and $s \rightarrow \infty$ shows that the difference is zero. We expand the logarithmic values via

$$
\log(1-z) = -\sum_{n=1}^{\infty} \frac{z^n}{n}, \qquad |z| < 1,
$$

and arrive at

$$
\sum_{n=1}^{\infty} \frac{-(\alpha_m^n + \beta_m^n)p^{-ns}}{n} = \sum_{k \text{ irred. monic}} \sum_{r=1}^{\infty} \frac{\eta^{mr}(k)p^{-r \deg(k)s}}{r}, \quad \Re s > 1.
$$

Both sides converge absolutely and locally uniformly, hence we can differentiate termwise and divide by −log *p* to obtain

$$
\sum_{n=1}^{\infty} -(\alpha_m^n + \beta_m^n)p^{-ns} = \sum_{k \text{ irred. monic}} \sum_{r=1}^{\infty} \deg(k)\eta^{mr}(k)p^{-r \deg(k)s}, \quad \Re s > 1.
$$

By comparing the Dirichlet coefficients on the two sides, we infer that

$$
-(\alpha_m^n + \beta_m^n) = \sum_{\substack{k \text{ irred. monic} \\ r \deg(k) = n}} \deg(k) \eta^{mr}(k), \qquad n \geq 1.
$$

In other words,

(10)
$$
-(\alpha_m^n + \beta_m^n) = \sum_{d|n} \sum_{\substack{k \text{ irred. monic} \\ \deg(k)=d}} d\eta^{\frac{mn}{d}}(k), \qquad n \geqslant 1.
$$

The polynomial $k(X) = X$ does not contribute to the inner sum, while the other irreducible monic polynomials $k \in \mathbb{F}_p[X]$ correspond bijectively to the Frobenius orbits lying in $\mathbb{F}_{p^n}^{\times}$ (cf. Theorem [3](#page-3-0) and the remarks preceding it). Namely, if $\{t_1, \ldots, t_d\}$ is the set of roots of *k* in $\overline{\mathbb{F}_p}$, then $\{t_1, \ldots, t_d\} \subset \mathbb{F}_{p^n}^\times$ is the corresponding Frobenius orbit of size *d* | *n*, and we have (cf. Definition [4\)](#page-4-1)

$$
\eta^{\frac{mn}{d}}(k) = e_p \left(ma \frac{n}{d}(t_1 + \dots + t_d) \right) e_p \left(mb \frac{n}{d}(t_1^{-1} + \dots + t_d^{-1}) \right).
$$

For any $1 \leq j \leq d$, we can interpret (cf. Definition [3\)](#page-3-3)

$$
\frac{n}{d}(t_1 + \dots + t_d) = \frac{n}{d} \sum_{i=0}^{d-1} \sigma^i(t_j) = \sum_{i=0}^{n-1} \sigma^i(t_j) = \text{Tr}_n(t_j)
$$

and

$$
\frac{n}{d}(t_1^{-1}+\cdots+t_d^{-1})=\frac{n}{d}\sum_{i=0}^{d-1}\sigma^i(t_j^{-1})=\sum_{i=0}^{n-1}\sigma^i(t_j^{-1})=\mathrm{Tr}_n(t_j^{-1}),
$$

hence

$$
\eta^{\frac{mn}{d}}(k) = e_p(ma \operatorname{Tr}_n(t_j))e_p(mb \operatorname{Tr}_n(t_j^{-1})) = e_p(m \operatorname{Tr}_n(at_j + bt_j^{-1})), \qquad 1 \leqslant j \leqslant d.
$$

Summing up these equations for $1 \leq j \leq d$, we get

$$
d\eta^{\frac{mn}{d}}(k)=\sum_{j=1}^d e_p(m\mathrm{Tr}_n(at_j+bt_j^{-1})).
$$

The right hand side is the sum of $e_p(m \text{Tr}_n(at + bt^{-1}))$ over the Frobenius orbit $\{t_1, \ldots, t_d\}$ corresponding to k , hence (10) readily implies (8) .

Corollary 3. *The identity* [\(3\)](#page-0-1) *holds for any positive integer n.*

Proof. Using Theorems [6](#page-6-3) and [4,](#page-3-2) we calculate

$$
p^{n} - 1 - \sum_{m=1}^{p-1} (\alpha_{m}^{n} + \beta_{m}^{n}) = \sum_{m=0}^{p-1} \sum_{t \in \mathbb{F}_{p^{n}}^{\times}} e_{p}(m \text{Tr}_{n}(at + bt^{-1}))
$$

\n
$$
= \sum_{t \in \mathbb{F}_{p^{n}}^{\times}} \sum_{m=0}^{p-1} e_{p}(m \text{Tr}_{n}(at + bt^{-1}))
$$

\n
$$
= p | \{ t \in \mathbb{F}_{p^{n}}^{\times} : \text{Tr}_{n}(at + bt^{-1}) = 0 \} |
$$

\n
$$
= |\{ (x, t) \in \mathbb{F}_{p^{n}} \times \mathbb{F}_{p^{n}}^{\times} : x^{p} - x = at + bt^{-1} \} |
$$

\n
$$
= |\{ (x, t) \in \mathbb{F}_{p^{n}} \times \mathbb{F}_{p^{n}} : at^{2} - t(x^{p} - x) + b = 0 \} |
$$

\n
$$
= |\{ (x, t) \in \mathbb{F}_{p^{n}} \times \mathbb{F}_{p^{n}} : (2at - (x^{p} - x))^{2} = (x^{p} - x)^{2} - 4ab \} |
$$

\n
$$
= |\{ (x, y) \in \mathbb{F}_{p^{n}} \times \mathbb{F}_{p^{n}} : y^{2} = (x^{p} - x)^{2} - 4ab \} |.
$$

Comparing the two sides, we obtain [\(3\)](#page-0-1). \Box

Remark 3. The equation $y^2 = (x^p - x)^2 - 4ab$ defines an affine real hyperelliptic curve of genus *p* − 1 over \mathbb{F}_p . It has two points at infinity, so by [\(3\)](#page-0-1) the number of \mathbb{F}_{p^n} -rational points of the completed (nonsingular projective) curve *C* equals

$$
|C(\mathbb{F}_{p^n})| = p^n + 1 - \sum_{m=1}^{p-1} (\alpha_m^n + \beta_m^n).
$$

An elegant way of expressing this fact is that the zeta function of *C* equals

$$
\zeta_C(s) = \frac{\prod_{m=1}^{p-1} (1 - \alpha_m p^{-s})(1 - \beta_m p^{-s})}{(1 - p^{-s})(1 - p^{1-s})} = \zeta_P(s) \prod_{m=1}^{p-1} L(s, \eta^m),
$$

where *P* is the projective line over \mathbb{F}_p .

4. THE HASSE DERIVATIVE

In the light of Corollary [3,](#page-7-0) we have reduced Theorem [1](#page-0-0) to the statement that the equation $y^2 = (x^p - x)^2 - 4ab$ has $p^n + O_p(p^{n/2})$ solutions over the finite field \mathbb{F}_{p^n} . Recall that $p > 2$ is a fixed odd prime, and *ab* is coprime to *p*. More generally, we shall prove using the method of Stepanov [\[4\]](#page-13-4) the following bound for hyperelliptic curves over finite fields, itself a special case of Weil's theorem for all algebraic curves over finite fields [\[6,](#page-13-2) p. 70].

Theorem 7 (Weil, Stepanov). Let $q = p^n$ be an odd prime power, and let $f(X) \in \mathbb{F}_q[X]$ be *a polynomial of degree m* \geq 3*. Assume that q* $>$ 6*m and f*(*X*) *is not a complete square in* $\overline{\mathbb{F}_p}[X]$ *. If N denotes the number of solutions of the equation* $y^2 = f(x)$ *over* \mathbb{F}_q *, then*

$$
|N-q| < 4m\lceil\sqrt{q}\rceil.
$$

Remark 4*.* Using the functional equation for the *L*-function associated with the hyperelliptic curve $y^2 = f(x)$ over \mathbb{F}_q and its extensions \mathbb{F}_{q} , one can deduce that the above bound improves itself to

$$
|N-q|\leqslant 2\left\lfloor\frac{m-1}{2}\right\rfloor\sqrt{q}
$$

even without the assumption $q > 6m$. See Lemma 4 in [\[7,](#page-13-3) Appendix V] for more detail.

By Lemma [4,](#page-1-1) the multiplicative group \mathbb{F}_q^{\times} is cyclic of even order $q-1$, hence for any $t \in \mathbb{F}_q^{\times}$ we have $t^{\frac{q-1}{2}} = 1$ or $t^{\frac{q-1}{2}} = -1$ depending on whether *t* is a square in \mathbb{F}_q^{\times} or not. Moreover, every square in \mathbb{F}_q^{\times} is a square in precisely two ways, hence with the notation

$$
N_a := |\{x \in \mathbb{F}_q : f(x)^{\frac{q-1}{2}} = a\}|, \qquad a \in \{0, \pm 1\},\
$$

we can express the defect $N - q$ as

(12)
$$
N - q = (N_0 + 2N_1) - (N_0 + N_1 + N_{-1}) = N_1 - N_{-1}.
$$

In other words, Theorem [7](#page-7-1) bounds the difference between the number of $x \in \mathbb{F}_q$ with $f(x)$ a nonzero square and those with $f(x)$ not a square.

Now the proof of Theorem [7](#page-7-1) relies on two basic ideas. The first idea is that it suffices to show the one-sided bound

(13)
$$
\max(N_0 + N_1, N_0 + N_{-1}) < \frac{q}{2} + 2m\lceil \sqrt{q} \rceil.
$$

Indeed, this inequality readily yields

$$
\max(N_1, N_{-1}) < \frac{q}{2} + 2m\lceil \sqrt{q} \rceil,
$$

and by $N_0 + N_1 + N_{-1} = q$ also

$$
\min(N_1, N_{-1}) = q - \max(N_0 + N_{-1}, N_0 + N_1) > \frac{q}{2} - 2m\lceil \sqrt{q} \rceil,
$$

whence (11) follows via (12) :

$$
|N - q| = |N_1 - N_{-1}| = \max(N_1, N_{-1}) - \min(N_1, N_{-1}) < 4m\lceil\sqrt{q}\rceil.
$$

The second idea is to exhibit, for any $a \in \{\pm 1\}$ and a suitable integer $\ell \geq 1$, a nonzero polynomial $h_a(X) \in \mathbb{F}_q[X]$ such that any $x \in \mathbb{F}_q$ satisfying $f(x)^{\frac{q-1}{2}} \in \{0, a\}$ is a root of *h*_{*a*}(*X*) of order at least ℓ , i.e. $(X − x)^{\ell}$ divides $h_a(X)$ in $\mathbb{F}_q[X]$. The point is that in this case we have

(14)
$$
\ell(N_0+N_a)\leqslant \deg h_a, \qquad a\in\{\pm 1\},\
$$

and by optimizing ℓ in terms of *q* and *m* we can deduce [\(13\)](#page-8-1), hence also Theorem [7.](#page-7-1)

In order to verify the divisibility relation $(X - x)^{\ell} | h_a(X)$ in $\mathbb{F}_q[X]$, we introduce a simple but powerful tool, the *Hasse derivative*.

Definition 6. Let *F* be a field, and let $h(X) \in F[X]$ be any polynomial. In the ring of polynomials of two variables $F[X, Y]$, there is a unique decomposition

(15)
$$
h(X+Y) = \sum_{k=0}^{\infty} (E^k h)(X) Y^k,
$$

where $(E^{k}h)(X) \in F[X]$, and the terms for $k > \deg h$ vanish. The polynomial $(E^{k}h)(X)$ is called the *k*-th Hasse derivative of $h(X)$.

It is clear that the operator E^k : $F[X] \to F[X]$ is *F*-linear, and also translation invariant in the sense that for any $x \in F$ the *k*-th Hasse derivative of the translated polynomial $h(X + x)$ equals $(E^k h)(X + x)$. It is also clear that $deg(E^k h)$ ≤ $deg h) − k$ for $0 \le k \le deg h$, with the convention that deg $0 = 0$, while $E^k h = 0$ for $k > \deg h$. In fact the binomial theorem gives that $E^k(X^n) = \binom{n}{k} X^{n-k}$ for $0 \leqslant k \leqslant n$, while $E^k(X^n) = 0$ for $k > n$.

Lemma 8. *Let F be a field,* $h(X) \in F[X]$ *, and* $x \in F$ *. Then* $(X - x)^{\ell} | h(X)$ *holds in* $F[X]$ *if and only if* $(E^k h)(x) = 0$ *for any* $0 \le k < l$ *.*

Proof. By translation invariance, we can assume without loss of generality that $x = 0$. Then, [\(15\)](#page-8-2) implies by the substitution $X \mapsto 0$ that

$$
h(Y) = \sum_{k=0}^{\infty} (E^k h)(0) Y^k,
$$

whence $Y^{\ell} | h(Y)$ holds in $F[Y]$ if and only if $(E^{k}h)(0) = 0$ for any $0 \le k < \ell$.

Lemma 9 (Leibniz rule). *For any polynomials* $h_1(X),...,h_n(X) \in F[X]$ *we have*

$$
E^{k}(h_{1}\cdots h_{n}) = \sum_{\substack{k_{1}+\cdots+k_{n}=k\\k_{1},\ldots,k_{n}\geq 0}} E^{k_{1}}(h_{1})\ldots E^{k_{n}}(h_{n}).
$$

Proof. This is straightforward from the definition [\(15\)](#page-8-2). Indeed,

$$
h_1(X+Y)\dots h_n(X+Y) = \left(\sum_{k_1=0}^{\infty} (E^{k_1}h_1)(X)Y^{k_1}\right)\cdots \left(\sum_{k_n=0}^{\infty} (E^{k_n}h_n)(X)Y^{k_n}\right)
$$

$$
= \sum_{k_1,\dots,k_n\geqslant 0} \left(E^{k_1}(h_1)(X)\dots E^{k_n}(h_n)(X)\right)Y^{k_1+\dots+k_n},
$$
 and the result follows.

Lemma 10. *Let F be a field, and let* $f(X), g(X) \in F[X]$ *be arbitrary. For any integers* $0 \leq k < n$, the polynomial $E^k(gf^n)$ is of the form $g^{(k)}f^{n-k}$, where $g^{(k)}(X) \in F[X]$. Moreover, *for a fixed f, the polynomial* $g^{(k)}$ *depends F-linearly on g. Finally,*

(16)
$$
\deg g^{(k)} \leqslant \deg g + k \deg f - k.
$$

Proof. By Lemma [9,](#page-9-0)

$$
E^{k}(gf^{n}) = \sum_{\substack{k_0+k_1+\cdots+k_n=k\\k_0,k_1,\ldots,k_n\geq 0}} E^{k_0}(g) E^{k_1}(f) \ldots E^{k_n}(f).
$$

Clearly, at least $n-k$ of the integers $k_1, \ldots, k_n \geq 0$ must vanish, hence each term on the right hand side is divisible by f^{n-k} in $F[X]$. This shows that $E^k(gf^n)$ is of the form $g^{(k)}f^{n-k}$, where $g^{(k)}(X) \in F[X]$. Moreover, for a fixed f, the factor $E^{k_0}(g)$ depends F-linearly on g, hence the same is true of the polynomial $g^{(k)}$. Finally, [\(16\)](#page-9-1) is immediate from

$$
\deg(g^{(k)}f^{n-k}) \leqslant \deg(gf^n) - k.
$$

5. STEPANOV'S AUXILIARY POLYNOMIALS

In this section we construct the two nonzero auxiliary polynomials $h_{\pm 1}(X) \in \mathbb{F}_q[X]$ that will allow us to derive (13) via (14) . We assume the conditions of Theorem [7,](#page-7-1) and we fix a value $a \in \{\pm 1\}$. The statement of Theorem [7](#page-7-1) does not change upon replacing $f(X)$ by *f*(*X* + *x*) for any *x* ∈ \mathbb{F}_q , hence we can assume without loss of generality that *f*(0) \neq 0. Indeed, $f(x) \neq 0$ for some $x \in \mathbb{F}_q$, because $f(X)$ has degree less than *q*.

We have seen that for the validity of (14) it suffices that

(17)
$$
f(x)^{\frac{q-1}{2}} \in \{0, a\} \implies (E^k h_a)(x) = 0, \quad x \in \mathbb{F}_q, \ 0 \le k < \ell.
$$

We choose $h_a(X)$ to be a multiple of $f(X)^\ell$, so that we can restrict to the values $f(x)^{\frac{q-1}{2}} = a$ in [\(17\)](#page-9-2). Specifically, we seek $h_a(X)$ in the form

(18)
$$
h_a(X) := f(X)^{\ell} \sum_{0 \le j < J} \left\{ r_j(X) + s_j(X) f(X)^{\frac{q-1}{2}} \right\} X^{jq},
$$

where $J > 0$ is a real parameter (to be chosen later in terms of ℓ, m, q), and

$$
r_j(X), s_j(X) \in \mathbb{F}_q[X], \qquad 0 \leqslant j < J
$$

are any polynomials with

(19)
$$
\deg r_j, \deg s_j < \frac{q-m}{2}, \qquad 0 \leqslant j < J.
$$

We examine first the possibility that $h_a(X) = 0$. Assume that this is the case, but not all the polynomials $r_j(X), s_j(X) \in \mathbb{F}_q[X]$ are zero. Let $0 \leq i < J$ be minimal such that either $r_i(X)$ or $s_i(X)$ is nonzero. Then

$$
\sum_{i \le j < J} \left\{ r_j(X) + s_j(X)f(X)^{\frac{q-1}{2}} \right\} X^{(j-i)q} = 0,
$$

whence in $\mathbb{F}_q[X]$ we have the congruence

$$
r_i(X) + s_i(X)f(X)^{\frac{q-1}{2}} \equiv 0 \pmod{X^q}.
$$

From here we infer that

$$
r_i(X)^2 f(X) \equiv s_i(X)^2 f(X)^q \equiv s_i(X)^2 f(X^q) \equiv s_i(X)^2 f(0) \pmod{X^q}.
$$

By (19) , the two sides are polynomials of degree less than *q*, hence in fact

$$
r_i(X)^2 f(X) = s_i(X)^2 f(0).
$$

As $f(0) \neq 0$, both $r_i(X)$ and $s_i(X)$ are nonzero, and $f(X)$ is a complete square in $\overline{\mathbb{F}_p}[X]$. This contradicts the assumptions of Theorem [7,](#page-7-1) hence we proved that $h_a(X) \neq 0$ unless all the polynomials $r_j(X)$, $s_j(X) \in \mathbb{F}_q[X]$ are zero.

Now we examine what $(E^k h_a)(x) = 0$ means for $f(x)^{\frac{q-1}{2}} = a$ and $0 \le k < \ell$, cf. [\(17\)](#page-9-2). In order to find the Hasse derivative $(E^k h_a)(X)$, we go back to the definition [\(15\)](#page-8-2), and we make a simple observation. Starting from the congruence in $\mathbb{F}_q[X,Y]$,

$$
(X+Y)^{jq} = (X^q + Y^q)^j \equiv X^{jq} \pmod{Y^q},
$$

we see that

$$
h_a(X+Y) \equiv \sum_{0 \leq j < J} \left\{ r_j(X+Y)f(X+Y)^\ell + s_j(X+Y)f(X+Y)^{\ell + \frac{q-1}{2}} \right\} X^{jq} \pmod{Y^q},
$$

whence for $0 \le k < q$ the coefficient of Y^k as an element of $\mathbb{F}_q[X]$ must be the same on the two sides. That is,

$$
(E^k h_a)(X) = \sum_{0 \le j < J} \left\{ E^k(r_j f^\ell)(X) + E^k(s_j f^{\ell + \frac{q-1}{2}})(X) \right\} X^{jq}, \qquad 0 \le k < q.
$$

By Lemma [10,](#page-9-3) we can rewrite this identity as

$$
(20) \qquad (E^k h_a)(X) = f(X)^{\ell-k} \sum_{0 \le j < J} \left\{ r_j^{(k)}(X) + s_j^{(k)}(X) f(X)^{\frac{q-1}{2}} \right\} X^{jq}, \qquad 0 \le k < q,
$$

where the polynomials $r_i^{(k)}$ $f_j^{(k)}, s_j^{(k)} \in \mathbb{F}_q[X]$ depend \mathbb{F}_q -linearly on the initial $r_j, s_j \in \mathbb{F}_q[X]$, and

(21)
$$
\deg r_j^{(k)}, \deg s_j^{(k)} < \frac{q-m}{2} + k(m-1), \qquad 0 \leq j < J, \ \ 0 \leq k < q.
$$

In passing, it is worthwhile to remark that $r_j^{(0)} = r_j$ and $s_j^{(0)} = s_j$. From now on we assume that $\ell \le q$, then by [\(20\)](#page-10-1) we can reduce [\(17\)](#page-9-2) to the simpler condition

(22)
$$
\sum_{0 \le j < J} \left\{ r_j^{(k)}(X) + as_j^{(k)}(X) \right\} X^j = 0, \qquad 0 \le k < \ell.
$$

Here we relied on the crucial fact that $x^{jq} = x^j$ for any $x \in \mathbb{F}_q$.

The constraints [\(22\)](#page-10-2) constitute a homogeneous system of linear equations for the coefficients of $r_j(X)$ and $s_j(X)$. By [\(19\)](#page-10-0), the number of variables in this system is

$$
\geqslant 2J\left\lceil \frac{q-m}{2}\right\rceil \geqslant J(q-m),
$$

while by (21) , the number of equations is

$$
\leqslant \sum_{0\leqslant k<\ell}\left\lceil\frac{q-m}{2}+k(m-1)+J\right\rceil<\ell\left(\frac{q-m}{2}+J\right)+\frac{\ell^2}{2}(m-1).
$$

This means that the construction [\(18\)](#page-9-4) yields a nonzero polynomial $h_a(X) \in \mathbb{F}_q[X]$ validat-ing [\(14\)](#page-8-3) as long as $\ell \leq q$ and

$$
J(q-m) \geqslant \ell\left(\frac{q-m}{2}+J\right)+\frac{\ell^2}{2}(m-1).
$$

Rearranging the last inequality,

$$
\left(J-\frac{\ell}{2}\right)(q-m-\ell) \geqslant \frac{\ell^2 m}{2},
$$

hence by imposing $\ell \le q/3$ and utilizing $m < q/6$ (cf. Theorem [7\)](#page-7-1) it suffices to have

$$
\left(J-\frac{\ell}{2}\right)\frac{q}{2}\geqslant \frac{\ell^2m}{2}.
$$

This motivates the choice

$$
J:=\frac{\ell}{2}+\frac{\ell^2m}{q}.
$$

With this choice [\(14\)](#page-8-3) yields, upon recalling [\(18\)](#page-9-4) and [\(19\)](#page-10-0),

$$
\ell(N_0+N_a)\leqslant \deg h_a < m\left(\ell+\frac{q-1}{2}\right)+\frac{q-m}{2}+Jq< mq+\frac{\ell q}{2}+\ell^2 m.
$$

In short,

$$
N_0+N_a<\frac{q}{2}+\frac{mq}{\ell}+\ell m,
$$

and by choosing $\ell := \lceil \sqrt{q} \rceil$ we obtain [\(13\)](#page-8-1). Note that the intermediate constraint $\ell \leq q/3$ is now automatically satisfied, because the conditions of Theorem [7](#page-7-1) force $q > 18$.

The proof of Theorem [7](#page-7-1) is now complete. To conclude Theorem [1](#page-0-0) via Corollary [3,](#page-7-0) we apply Theorem [7](#page-7-1) for $n \ge 4$ and $f(X) := (X^p - X)^2 - 4ab$. All we need to check is that $f(X)$ is not a complete square in $\overline{\mathbb{F}_p}[X]$. However, this is clear: $f(X) = g(X)^2$ would imply

$$
(X^{p} - X - g(X))(X^{p} - X + g(X)) = 4ab,
$$

an obvious contradiction to the fact that one of the factors $X^p - X \pm g(X)$ is non-constant.

6. SUPPLEMENTS

With a bit of algebraic number theory, we can show that the inequality in Theorem [1](#page-0-0) is always strict. The proof below is due to Elkies and MathOverflow user Lucia (see [\[3\]](#page-13-5)).

Theorem 8. Let $p > 2$ be a prime, and let $(ab, p) = 1$. Then $|S(a, b; p)| < 2\sqrt{p}$.

Proof. The Kloosterman sum $S(a, b; p)$ is real, as can be seen by writing $-t$ for *t* in [\(1\)](#page-0-3). Therefore, by Theorem [1,](#page-0-0) we only need to exclude the possibility that

(23)
$$
\sum_{t=1}^{p-1} e_p(at+b\bar{t}) = \pm 2\sqrt{p}.
$$

Let us assume [\(23\)](#page-11-0). Then both sides lie in the ring $\mathbb{Z}[\xi]$, where $\xi := e^{2\pi i/p}$, which consists of the integral linear combinations of $1, \xi, \xi^2, \ldots$. Raising the equation to the *p*-th power yields, by the multinomial theorem,

$$
\sum_{t=1}^{p-1} 1 \equiv \pm 2^p p^{p/2} \pmod{p\mathbb{Z}[\xi]}.
$$

The left hand side is congruent to −1 modulo *p*Z[ξ], hence further squaring both sides,

$$
1 \equiv 2^{2p} p^p \equiv 0 \pmod{p\mathbb{Z}[\xi]}.
$$

That is, $1 \in p\mathbb{Z}[\xi]$, which is a contradiction as we explain now. It is classical and easy to prove with the Schönemann–Eisenstein criterion that the cyclotomic polynomial

$$
k(X) := X^{p-1} + X^{p-2} + \dots + X + 1 = (X - \xi)(X - \xi^2) \dots (X - \xi^{p-1})
$$

is irreducible over \mathbb{Q} , hence $\mathbb{Q}(\xi)$ is isomorphic to $\mathbb{Q}[X]/(k(X))$ by Lemma [2](#page-1-2) and its proof. In particular, $\{1, \xi, \ldots, \xi^{p-2}\}$ is a basis of $\mathbb{Q}(\xi)$ as a vector space over \mathbb{Q} , and $\mathbb{Z}[\xi]$ consists of the vectors whose coordinates are integers with respect to this basis. This shows readily that $1 \notin p\mathbb{Z}[\xi]$, because $1 \notin p\mathbb{Z}$, and we are done. □

Finally, following Heath-Brown [\[1\]](#page-13-6), we give an application of Theorem [1](#page-0-0) to the distribution of products modulo a prime number.

Theorem 9. *Let* $p > 2$ *be a prime number. Let* $\mathcal{U}, \mathcal{V} \subseteq \{1, 2, ..., p-1\}$ *be two intervals, and let* $r \in \{1, 2, \ldots, p-1\}$ *be a nonzero residue modulo p. Then*

$$
\left|\sum_{\substack{u\in\mathscr{U},\ v\in\mathscr{V}\\uv\equiv r\;(\text{mod}\;p)}}1-\frac{|\mathscr{U}||\mathscr{V}|}{p-1}\right|<2p^{1/2}(\log p)^2.
$$

Proof. Using Fourier analysis on $\mathbb{Z}/p\mathbb{Z}$, we can express

$$
\sum_{\substack{u \in \mathcal{U}, v \in \mathcal{V} \\ uv \equiv r \pmod{p}}} 1 = \sum_{t=1}^{p-1} \left(\sum_{\substack{u \in \mathcal{U} \\ t \equiv u \pmod{p}}} 1 \right) \left(\sum_{\substack{v \in \mathcal{V} \\ v \equiv r \pmod{p}}} 1 \right)
$$
\n
$$
= \sum_{t=1}^{p-1} \left(\sum_{u \in \mathcal{U}} \frac{1}{p} \sum_{a=1}^p e_p(a(t-u)) \right) \left(\sum_{v \in \mathcal{V}} \frac{1}{p} \sum_{b=1}^p e_p(b(\overline{t} - \overline{r}v)) \right)
$$
\n
$$
= \frac{1}{p^2} \sum_{a,b=1}^p \left(\sum_{t=1}^{p-1} e_p(a t + b\overline{t}) \right) \left(\sum_{u \in \mathcal{U}} e_p(-au) \right) \left(\sum_{v \in \mathcal{V}} e_p(-b\overline{r}v) \right).
$$

The first inner sum is *p*−1 when both *a* and *b* equal *p*, it is −1 when exactly one of *a* and *b* equals *p*, and otherwise it is the Kloosterman sum $S(a, b; p)$ considered in Theorem [1.](#page-0-0) Using this information, we obtain

$$
\sum_{\substack{u\in\mathcal{U}, v\in\mathcal{V}\\uv\equiv r\,\,(\text{mod}\,\,p)}}1=|\mathcal{U}||\mathcal{V}|\frac{p+1}{p^2}+\frac{1}{p^2}\sum_{a,b=1}^{p-1}S(a,b;p)\left(\sum_{u\in\mathcal{U}}e_p(-au)\right)\left(\sum_{v\in\mathcal{V}}e_p(-b\bar{r}v)\right),
$$

whence by Theorem [1](#page-0-0) and the fact that $\mathcal U$ and $\mathcal V$ are intervals,

$$
\left|\sum_{\substack{u \in \mathcal{U}, v \in \mathcal{V} \\ uv \equiv r \, (\text{mod } p)}} 1 - \frac{|\mathcal{U}||\mathcal{V}|}{p-1}\right| < \frac{1}{p} + 2\sqrt{p} \left(\frac{1}{p} \sum_{a=1}^{p-1} \left| \sum_{u \in \mathcal{U}} e_p(-au) \right| \right) \left(\frac{1}{p} \sum_{b=1}^{p-1} \left| \sum_{v \in \mathcal{V}} e_p(-b\overline{r}v) \right| \right) \newline < \frac{1}{p} + 2p^{1/2} \left(\frac{1}{p} \sum_{c=1}^{p-1} \frac{1}{\sin\left(\frac{\pi c}{p}\right)}\right)^2 < 2p^{1/2} (\log p)^2.
$$

Here, the last inequality can be checked numerically for $p < 11$, while for $p \ge 11$ we verify it as follows. We have

$$
\frac{1}{p} \sum_{c=1}^{p-1} \frac{1}{\sin\left(\frac{\pi c}{p}\right)} = \frac{2}{p} \sum_{c=1}^{\frac{p-1}{2}} \frac{1}{\sin\left(\frac{\pi c}{p}\right)} < \sum_{c=1}^{\frac{p-1}{2}} \frac{1}{c} < 0.68 + \log \frac{p-1}{2} < -0.01 + \log p,
$$

therefore

$$
\left(\frac{1}{p}\sum_{c=1}^{p-1} \frac{1}{\sin\left(\frac{\pi c}{p}\right)}\right)^2 < (-0.01 + \log p)^2 < (\log p)^2 - \frac{\log p}{100} < (\log p)^2 - \frac{1}{2p^{3/2}}.
$$
\nThe proof is complete.

Corollary 4. Let $p, r, \mathcal{U}, \mathcal{V}$ as in Theorem [9.](#page-12-0) If $|\mathcal{U}| |\mathcal{V}| > 2p^{3/2}(\log p)^2$, then the congru*ence uv* \equiv *r* (mod *p*) *has a solution in u* $\in \mathcal{U}$ *and v* $\in \mathcal{V}$ *.*

Proof. If the congruence $uv \equiv r \pmod{p}$ has no solution in $u \in \mathcal{U}$ and $v \in \mathcal{V}$, then Theorem [9](#page-12-0) yields

$$
\frac{|\mathscr{U}| |\mathscr{V}|}{p-1} < 2p^{1/2} (\log p)^2, \\
p)^2. \qquad \qquad \Box
$$

hence also $|\mathcal{U}| |\mathcal{V}| < 2p^{3/2} (\log p)^2$

REFERENCES

- [1] D. R. Heath-Brown, *Arithmetic applications of Kloosterman sums*, Nieuw Arch. Wiskd. (5) 1 (2000), 380– 384.
- [2] H. Iwaniec, E. Kowalski, *Analytic number theory*, American Mathematical Society Colloquium Publications, 53, American Mathematical Society, Providence, RI, 2004.
- [3] Responses to MathOverflow question No. 166297, <http://mathoverflow.net/questions/166297>
- [4] S. A. Stepanov, *An elementary proof of the Hasse-Weil theorem for hyperelliptic curves*, J. Number Theory 4 (1972), 118–143.
- [5] A. Weil, *On some exponential sums*, Proc. Nat. Acad. Sci. U. S. A. 34 (1948), 204–207.
- [6] A. Weil, *Sur les courbes algébriques et les variétés qui s'en déduisent*, Actualités Sci. Ind., 1041, Hermann et Cie., Paris, 1948.
- [7] A. Weil, *Basic number theory*, Third edition, Die Grundlehren der Mathematischen Wissenschaften, 144, Springer-Verlag, New York-Berlin, 1974.

MTA ALFRÉD RÉNYI INSTITUTE OF MATHEMATICS, POB 127, BUDAPEST H-1364, HUNGARY *E-mail address*: gharcos@renyi.hu

CENTRAL EUROPEAN UNIVERSITY, NADOR U. 9, BUDAPEST H-1051, HUNGARY *E-mail address*: harcosg@ceu.hu