## ON RAMSEY COVERING-NUMBERS

## A. GYÁRFÁS

## 0. INTRODUCTION

In this paper I should like to sketch some aspects of a Ramsey-type problem (part 2.) which arose from a geometrical problem of T. Gallai [1]. Let me present the rough skeleton of the theorems discussed later.

If we colour the edges of a complete graph $G$ with $n$ colours in such a way that we need a sufficiently large number of one-coloured complete subgraphs of $G$ in order to cover $G$ 's vertices then for at least one $i$, ( $1 \leqslant i \leqslant n$ ) $G$ will contain a prescribed subgraph coloured with the $i-$ th colour.

## 1. NOTIONS AND NOTATIONS

| Graph | $G, H, \ldots$ | finite, undirected, no loops and multiple <br> edges |
| :--- | :--- | :--- |
| . | $V(G), E(G)$ |  |
| Vertex and edge set |  |  |
| Subgraph | $G \subset H$ | always induced (spanned) subgraph |

The set of $n$-col- $|\mathscr{K}(n) \quad|$ complete graphs the edges of which oured complete graphs

Covering number of $\alpha(G)$ an $n$-coloured complete graph $G$ are coloured with $n$ colours. It is allowed to colour an edge with more than one colour.
it is the smallest $k$ so that $V(G)=$ $=\bigcup_{i=1}^{k} V\left(G_{i}\right)$ and $G_{i}$ is a one-coloured complete graph.
the set of all graphs
the set of complete graphs
denotes the Cartesian product of $n$ copies of $\mathscr{H}$ where $\mathscr{H}$ is a set of graphs
$=\{\bar{H}: H \in \mathscr{H}\}$ where $\mathscr{H}$ is a set of graphs

## 2. THE BASIC PROBLEM AND ITS RELATION TO THE ORIGINAL RAMSEY PROBLEM

2.1. According to a well-known theorem of Ramsey [2] for any $K=\left(K_{1}, K_{2}, \ldots, K_{n}\right) \in \mathscr{K}^{n}$ there exists a natural number $R=R(k)$ with the property:

If $\quad G \in \mathscr{K}(n) \quad$ and $\quad|V(G)| \geqslant R$
then for at least one $i,(1 \leqslant i \leqslant n) \quad G$ contains a subgraph in the $i$-th colour isomorphic to $K_{i}$. The smallest $R$ with the above property is called the Ramsey-number belonging to $K_{1}, K_{2}, \ldots, K_{n}$ and it is denoted by $R_{0}(K)$.

Our basic problem is the following:
2.2. To describe the set $\mathscr{H} \subset \mathscr{G}^{n}$. for which the following statement holds

For every $H=\left(H_{1}, H_{2}, \ldots, H_{n}\right) \in \mathscr{H}$ there exists a natural number $R_{1}$ with the property:

If $G \in \mathscr{K}(n)$ and $\alpha(G) \geqslant R_{1}$ then for at least one $i$ contains a subgraph in the $i$-th colour isomorphic to $H_{i}$.

The smallest $R_{1}$ with the above property should be called the Ramsey covering-number belonging to $H^{\prime} .^{\prime}$ It is denoted by $C_{0}=C_{0}(H)$.

In case of $H \in \mathscr{K}^{n}$ the following trivial inequality holds between the Ramsey-numbers and the Ramsey covering-numbers:

$$
C_{0}(H) \leqslant R_{0}(H) \leqslant\left(\max _{1 \leqslant i \leqslant n}\left|V\left(H_{i}\right)\right|-1\right)\left(C_{0}(H)-1\right)+1
$$

## 3. SOME RESULTS AND AN OPEN QUESTION

Let $H \subset \mathscr{G}^{n}$ be the set defined in 2.2. The following result was proved in [3].

Theorem 1. Let $Q$ be the set of graphs the complements of which contain no adjacent edges, then

$$
Q^{n} \subset \mathscr{H}
$$

Let us continue with the central open question:
Question 1. Let $\mathscr{R}$ be the set of graphs the complements of which contain no circles and let $\mathscr{A}(n)$ be the set of $n$-tuples formed by taking $n-1$ components from $\mathscr{K}$ and one from $\mathscr{R}$. Is it true that

$$
\mathscr{A}(n) \subset \mathscr{H} ?
$$

(Special cases will be considered in part 4 and 5.)
There are some degenerate elements of $\mathscr{H}$.
(1) The $n$-tuples of graphs at least one component of which is the one-point graph or the two-point graph without edge.
(2) The $n$-tuples where at most one component differs from the twopoint complete graph.

The $n$-tuples listed in (1) and (2) are called the degenerate elements of $\mathscr{H}$ and we denote them by $\mathscr{D}$.

Theorem 2. If $H=\left(H_{1}, \ldots, H_{n}\right) \notin \mathscr{A}(n) \cup Q^{n} \cup \mathscr{D}$ then $H \notin \mathscr{H}$.
Theorem 2 shows that the affirmative answer to Question 1 would settle the problem in 2.2.

## 4. STRONG COLOURINGS

Now we investigate the case when we colour the edges of the complete graphs with the restriction that every edge has exactly one colour. We call such a colouring "strong". The set of strongly $n$-coloured complete graphs will be denoted by $\mathscr{K}_{s}(n)$. One more notation: if $H=$ $=\left(H_{1}, \ldots, H_{n}\right)$ then $\bar{H}$ denotes $\left(\bar{H}_{1}, \ldots, \bar{H}_{n}\right)$. Let $\mathscr{H}_{s}$ be defined on the analogy of 2.2 . if we write $\mathscr{K}_{s}(n)$ instead of $\mathscr{K}(n)$. It is obvious that $\mathscr{H} \subset \mathscr{H}_{s}$ and the following theorems show that the inclusion is proper.

Theorem 3. $\bar{Q}^{n} \subset \mathscr{H}_{s}$ ( $Q$ defined in Theorem 1).
Question 2. $\mathscr{A}(n) \cup \bar{A}(n) \subset \mathscr{H}_{s} ? \quad(\mathscr{A}(n)$ defined in Question 1).
Theorem 4. Let $\mathscr{B}_{k}$ be the set of complete $k$-partite graphs and $T$ be the three-point graph with two edges. Let $\mathscr{T}(n)$ be the set of $n$ tuples with one component from $\mathscr{B}_{k}$ and the others are subgraphs of $T$. Then $\mathscr{T}(n) \subset \mathscr{H}_{s}$ and $\overline{\mathscr{T}}(n) \subset \mathscr{H}_{s}$.

Theorem 5. Let $\mathscr{L}$ be the set of graphs in the form $A \cup B$ where $A \cap B=\phi, A$ is a complete graph and $B$ is an at most one-point graph. Then $\mathscr{L}^{n} \subset \mathscr{H}_{s}$ and $\overline{\mathscr{L}}^{n} \subset \mathscr{H}_{s}$.

- Proposition 1. If $\mathscr{D}^{*}$ denotes the $n$-tuples of graphs where at least two components are empty graphs, then $\mathscr{D}^{*} \subset \mathscr{H}_{s}$.

Theorem 6. If $H \notin \mathscr{H} \cup \bar{Q}^{n} \cup \overline{\mathscr{A}}(n) \cup \mathscr{T}(n) \cup \overline{\mathscr{T}}(n) \cup \mathscr{L}^{n} \cup \overline{\mathscr{L}}^{n} \cup$ $\cup \mathscr{D}^{*}$ then $\mathscr{H} \notin \mathscr{H}_{s}$.

## 5. PROPERTIES OF GRAPHS WITH LARGE CHROMATIC NUMBER AND WITHOUT COMPLETE $k$-GON

Let $G$ be a graph. We may consider $G$ as a strongly two-coloured complete graph by taking the edges of $G(\bar{G})$ as coloured with the first (second) colour. In this formulation the special case $n=2$ of Question 2 is equivalent with

Question 3. Let $F$ be a forest and $k$ a natural number. Is there a natural number $l=l(F, k)$ with the property: if $G$ is a graph without a complete $k$-gon and $\chi(G) \geqslant l$ then $G$ containts $F$ as a subgraph.
J. Gerlits proved first (oral communication) that the answer is affirmative to Question 3 if $k=3$ and $F$ is a path.

Let $\chi_{0}=\chi_{0}(F, k)$ be the smallest number with the above property. Now we can state

Theorem 7. $\frac{|F|+1}{2} \leqslant \chi_{0}(F, 3) \leqslant|F|-1 \quad(F \quad$ is a path and $|F| \geqslant 4$ ).
L. Lovász showed that $\chi_{0}(F, k)$ exists if $F$ is a path for arbitrary $k$. The existence of $\chi_{0}(F, k)$ is proved otherwise only for $|F| \leqslant 5$ and $k=3$ and for the (trivial) case when $F$ is a star.

The upper bound in Theorem 7 follows from the following theorem.
Theorem 8. Let $G$ be a connected $n$-chromatic graph which contains no triangle and $P$ and arbitrary point in $G$. There is a path of $n+1$ points in $G$ without diagonals. $(n \geqslant 3)$.

## 6. HELLY STRUCTURES

A pair $(X, \mathscr{A})$ is called Helly structure if $X$ is a set, $\mathscr{A}$ is a family of subsets of $X$ and there exists a natural number $t$ with the property:

If $\mathscr{B}$ is a finite subfamily of $\mathscr{A}$ any two members of $\mathscr{B}$ have non-empty intersection then there exists a set $P \subset X$ so that $|P| \leqslant t$ and $B \cap P \neq \phi$ if $B \in \mathscr{y}$.

Let $\left(X_{1}, \mathscr{A}_{1}\right), \ldots,\left(X_{n}, \mathscr{A}_{n}\right)$ be Helly structures and $X_{i} \cap X_{j}=\phi$ for $i \neq j$. We define the sum $\sum_{i=1}^{n}\left(X_{i}, \mathscr{A}_{i}\right)=(X, \mathscr{A})$ in the following way: $X=\bigcup_{i=1}^{n} X_{i}, \mathscr{A}=\left\{\left(A_{1}, A_{2}, \ldots, A_{n}\right): A_{i} \in \mathscr{A}_{i}\right\}$.

The following theorem connects the Helly structures and the set defined in 2.2.

Theorem 9. Let $\left(X_{1}, \mathscr{A}_{1}\right) \ldots\left(X_{n}, \mathscr{A}_{n}\right)$ be Helly structures and suppose that the graph $H_{i}$ can not be the intersection-graph of sets of $\mathscr{A}_{i}$ (for $1 \leqslant i \leqslant n$ ). In thiṣ case $\left(H_{1}, \ldots, H_{n}\right) \in \mathscr{H}$ implies that $\sum_{i=1}^{n}\left(X_{i}, \mathscr{A}_{i}\right)$ is also a Helly structure.

Examples and applications of this theorem can be found in [3].

## 7. PROOFS

- In this section we present the proofs of the theorems discussed above.

Theorem 1 was proved in [3].
For the proof of Theorem 2 we have to define some special $m$-coloured (or 2-coloured) complete graphs. The graph $U^{k} \in \mathscr{K}(m)$ looks like this:


Let $S^{k}$ be a graph containing no triangles and the chromatic number of which is $k$. Let $\left|V\left(S_{n}\right)\right|=n_{k}$ and $A$ be a copy of $S_{k}$. Replace the vertices of $A$ by $B_{1}, B_{2}, \ldots, B_{n_{k}}$ where $B$ is a copy of $S_{k}$. All
edges between $B_{i}$ and $B_{j}$ are coloured with colour 1 if the corresponding vertices of $A$ are connected by an edge. The edges of $B_{i}$ are coloured with colour 2 and all the remaining edges are coloured by $1,2, \ldots$ and $m$.
$W^{k} \in \mathscr{K}(2)$ is defined as follows: $V\left(W^{k}\right)=\left\{w_{i j}\right\}_{i, j=1}^{k}$. The edge connecting the vertices $w_{i j}$ and $w_{r s}$ is coloured with colour 1 if $i \neq r$ and coloured with colour 2 if $j \neq s$.
$W_{1}^{k} \in \mathscr{K}(2)$ has the points $\left\{w_{i j}\right\}_{i, j=1}^{k}$. The edge between $w_{i j}$ and $w_{r s}$ is coloured with 1 if $j=s$, otherwise it is coloured with colour 2.

$X^{k} \in \mathscr{K}(2)$ will be defined as follows: $V\left(X^{k}\right)=\bigcup_{i=1}^{k} B_{i}$ where $B_{i}$ is a copy of $S_{k}$. The edges of $B_{i}$ are coloured with the colour 1, the edges between different $B_{i}$ 's have colour 2, the remaining edges are twocoloured.

We define $\quad Y^{k} \in \mathscr{K}(2): V\left(Y^{k}\right)=\bigcup_{i=1}^{k} B_{i}$ where the $B_{i}$ 's are again
copies of $S_{k}$. Let $V\left(B_{i}\right)=\left\{b_{1}^{i}, \ldots, b_{n_{k}}^{i}\right\}$ and the edges of $B_{i}$ have colour 1 , the edge between $b_{t}^{i}$ and $b_{t}^{j}$ is coloured with 2 for $i \neq j$ and $1 \leqslant t \leqslant n_{k}$. All the remaining edges are bi-coloured.

Finally $Z^{k}$ will be a graph which does not contain a circuit of length less than or equal to $l$, and the chromatic number of which is $k$. The edges of $Z^{k}$ are coloured with 2 the complement-edges with colour 1.


The graphs considered above are special $n$-coloured complete graphs. If $T^{k}$ denotes any one of $U^{k}, W^{k}, W_{1}^{k}, X^{k}, Y^{k}, Z^{k}$ then it has the property: if $k \rightarrow \infty$ then $\alpha\left(T^{k}\right) \rightarrow \infty$ so it follows that,

$$
\begin{equation*}
H=\left(H_{1}, H_{2}, \ldots, H_{n}\right) \in \mathscr{H} \quad \text { involves that } \quad H_{i} \subset T^{k} \tag{*}
\end{equation*}
$$ for some $k$ in the $i$-th colour.

Now we turn to the proof of Theorem 2. Suppose that

$$
H=\left(H_{1}, H_{2}, \ldots, H_{n}\right) \notin \mathscr{A}(n) \cup Q^{n} \cup \mathscr{U} .
$$

We prove that $H \notin \mathscr{H}$. We investigate two cases.
I. More than one $H_{i}$ are empty graphs. Let $H_{1}, H_{2}, \ldots, H_{m}$ be empty graphs ( $m \geqslant 2$ ) and $H_{m+1}, \ldots, H_{n}$ be non-empty. Clearly $H_{i} \not \subset U^{k}$ for every $k$ in the colour $i,(1 \leqslant i \leqslant n)$ so we conclude that $H \notin \mathscr{H}$ by (*).
II. We can choose $H_{1}, H_{2}$ so that $H_{i}$ is non-empty for $3 \leqslant i \leqslant n$ and $H_{1}, H_{2}$ contains at least three vertices. $A, B, C$ will denote the following graphs:
A: -
$0 \quad 0$
B:

$C$ :


From $H \notin \mathscr{A}(n) \cup Q^{n}$ follows that at least one of the following six possibilities holds:
(i) $\vec{H}_{1}$ contains a circuit of length $l$ and $H_{2}$ contains a triangle
(ii) $A \subset H_{1}$ and $A \subset H_{2}$
(iii) $B \subset H_{1}$ and $B \subset H_{2}$
(iv) $B \subset H_{1}$ and $A \subset H_{2}$
(v) $C \subset H_{1}$ and $A \subset H_{2}$
(vi) $C \subset H_{1}$ and $B \subset H_{2}$
(i) is impossible because $H_{1}, H_{2} \not \subset Z^{k}$ in the first and second colour respectively $H_{i} \not \subset Z^{k}$ for $i \geqslant 3$ because $H_{i}$ is non-empty.

Similar argument shows that the cases (ii) through (vi) are impossible. We can show that the graphs $A, B, C$ which are subgraphs of $H_{1}$ and $H_{2}$ are not contained in our special graphs. In the cases (ii), (iii), (iv), (v), (vi) we use the graphs $U^{k}, W^{k}, Y^{k}, X^{k}, W_{1}^{k}$ respectively.

Proof of Theorem 3. Let $H=\left(H_{1}, H_{2}, \ldots, H_{n}\right) \in \bar{Q}^{n}$ that is $H_{i}$ can be written as the union of $a_{i}$ points and $b_{i}$ disjoint edges. Let $a=\max _{i} a_{i}$ and $b=(n-1) \max _{i} b_{i}+1 . Q^{*}$ denotes a graph the complement of which consists of $a$ disjoint vertices and $b$ disjoint edges.

Clearly (cf. Theorem 1) $Q^{*} \in Q^{n}$. Let $G \in \mathscr{K}_{s}(n)$ for which $\alpha(G)>$ $>C_{0}(\underbrace{Q^{*}, Q^{*}, \ldots, Q^{*}}_{n \text { times }})$. In this case $G$ will contain $Q^{*}$ in the $i$-th colour for some $i$. It is obvious (by the definition of $a$ and $b$ ) that this subgraph contains $H_{j}$ for some $j \neq i$.

## Proof of theorem 4.

I. We prove $\mathscr{T}(n) \subset \mathscr{H}_{s}$ by induction on $n$. The case $n=1$ is trivial. Assuming that $\mathscr{T}(n) \subset \mathscr{H}_{s}$ we prove that $\mathscr{T}(n+1) \subset \mathscr{H}_{s}$. Let $H_{1}=\ldots=H_{n}=\Omega$ and $H_{n+1}$ be the complete $k$-partite graph which has $k$ points in its classes. (It is clear that every $k$-partite complete graph is a subgraph of such a $H_{n+1}$ for some $k$.)

Let $G \in \mathscr{K}_{s}(n+1)$ and
(i)
$\alpha(G)>\left(\left(C_{0}\left(H_{2}, H_{3}, \ldots, H_{n}, H_{n+1}\right)-1\right)(k[(k-1)(n-1)+1]-1)+k\right.$.
If $H_{i} \not \subset G$ in the $i$-th colour for $i=1,2, \ldots, n$ then $G$ must be written as the union of disjoint complete graphs coloured by the $i$-th colour (the edges not belonging to these complete graphs are not coloured with colour $i$ ). Let us denote these complete graphs in colour 1 by $A_{1}, A_{2}, \ldots, A_{r}$ and let $V\left(A_{i}\right)=\bigcup_{j=1}^{r_{i}} a_{j}^{i}$.

We can assume that $\left|V\left(A_{i}\right)\right| \geqslant\left|V\left(A_{j}\right)\right|$ for $i \geqslant j$. The number $\left|\left\{s:\left|A_{s}\right| \geqslant x\right\}\right|$ is denoted by $t_{x}$. We define $B_{u}$ 's as the "rows" of $A_{i}$ 's that is $B_{u}=\bigcup_{j=t+1}^{r} a_{u}^{j}$. We can write $V(G)=\bigcup_{i=1}^{t} A_{i} \cup \bigcup_{u} B_{u}$ and here the $A_{i}$ 's span complete graphs in colour 1 and the $B_{u}$ 's are $n$-coloured complete graphs so $B_{u}$ can be covered by at most $C_{0}\left(H_{2}, H_{3}, \ldots, H_{n}, H_{n+1}\right)-1$ complete one-coloured graphs by the inductive hypothesis. We get a covering of $G$ by at most
(ii) $t_{x}+\left(C_{0}\left(H_{2}, \ldots, H_{n+1}\right)-1\right)(x-1)$ complete graphs and comparing (i) and (ii) we conclude that
(iii) $t_{x} \geqslant k$ if $x=k[(k-1)(n-1)+1]$ that is for $1 \leqslant i \leqslant k$ $\left|V\left(A_{i}\right)\right| \geqslant k[(k-1)(n-1)+1]$. Let us choose the points $a_{1}^{1}, \ldots, a_{1}^{k}$ from $V\left(A_{1}\right)$. These points are connected with at most $k(n-1)$ points of $V\left(A_{j}\right),(2 \leqslant j \leqslant k)$ in the colours $2,3, \ldots, n$. We omit these points from $\bigcup_{i=2} V\left(A_{i}\right)$. Now we continue by choosing $a_{i_{1}}^{2}, a_{i_{2}}^{2}, \ldots, a_{i_{k}}^{2}$ from the reduced set $V\left(A_{2}\right)$ and remove from $\bigcup_{i=3}^{k} V\left(A_{i}\right)$ the points which are connected with $a_{i_{n}}$ by edges of $2,3, \ldots, n$ colour. The condition $\left|V\left(A_{i}\right)\right| \geqslant k[(k-1)(n-1)+1],(1 \leqslant i \leqslant k)$ ensures that the process can be repeated until we have chosen $k$ points from $A_{k}$. The graph spanned by the resulting vertex-set is isomorphic to $H_{n+1}$ in the $n+1$-th colour.
II. We prove here that $\overline{\mathscr{T}}(n) \subset \mathscr{H}_{s}$.
(a) $\overline{\mathscr{T}}(2) \subset \mathscr{H}_{s}$ follows from $\mathscr{T}(2) \subset \mathscr{H}_{s}$ by symmetry.
(b) for $n>2$ let $H_{1}=H_{2}=\ldots=H_{n-1}=\bar{T}$ and $H_{n} \in \overline{\mathscr{B}}_{k}$.

Let $G \in \mathscr{K}_{s}(n)$ for which
(iv) $\alpha(G)>C_{0}\left(H_{1}, H_{n}\right)+1$.

We prove that in this case $H_{i} \subset G$ in the colour $i$ for at least one $i$ i.e. $H=\left(H_{1}, \ldots, H_{n}\right) \in \mathscr{H}_{s}$. If there is $A, B, C \in V(G)$ so that $A B$ and $A C$ edges have different colour from the colour-set $1,2, \ldots, n-1$ then $H_{i} \subset G$ for some $i \leqslant n-1$. Otherwise $V(G)-P=X \cup Y$ for an arbitrary $P \in V(G)$ where the edges between $P$ and $X$ have colour $i$, $(i \leqslant n-1)$ and the edges between $P$ and $Y$ have colour $n$. Moreover the edges between $X$ and $Y$ have to be of colour $i$ and the edges in $Y$ have to be of colour $n$. The edges of $X$ are coloured with colour $i$ and $n$. We conclude that the set $X$ spans a two-coloured complete graph and $P \cup Y$ spans a one-coloured complete graph. $\alpha(X) \geqslant C_{0}\left(H_{1}, H_{n}\right)+1$ by condition (iv) so we can apply (a) for $X$ which proves our statement.

## The proof of Theorem 5.

(a) First we prove theorem for the case and when only one $B$ is non-empty, that is

$$
H_{1}=A \cup B, \quad H_{2}, H_{3}, \ldots, H_{n}
$$

are complete graphs.
Let $G \in \mathscr{K}_{s}(n)$ and
(i) $\alpha(G)>\left[R_{0}\left(A, H_{2}, \ldots, H_{n}\right)\right]^{n-1}$.

We assert that there is $P \in V(G)$ and a colour $i$ for $2 \leqslant i \leqslant n$ so that at least $R_{0}\left(A, H_{2}, \ldots, H_{n}\right)$ edges starting from $P$ have colour $i$.

Supposing the contrary, the graph $G$ is considered as a one-coloured graph in the colour 2. Every vertex of $G$ has degree of at most $R_{0}\left(A, H_{2}, \ldots, H_{n}\right)-1$ so $G$ is at most $R_{0}\left(A, H_{2}, \ldots, H_{n}\right)$-chromatic i.e. $\quad V(G)=\bigcup_{j=1}^{t} A_{j}$ where $t \leqslant R_{0}\left(A, H_{2}, \ldots, H_{n}\right)$ and $A_{t} \in \mathscr{K}_{s}(n-1)$. Repeating this argument we see that $G$ can be covered by at most $\left[R_{0}\left(A, H_{2}, \therefore, H_{n}\right)\right]^{n-1}$ complete graphs of colour 1 which contradicts to (i).

We can assume therefore the existence of $P \in V(G)$ and $X \subset V(G)$ such that the edges between $P$ and $X$ are coloured with $i,(2 \leqslant i \leqslant n)$ and $|X| \geqslant R_{0}\left(A, H_{1}, \ldots, H_{n}\right)$. Applying Ramsey's theorem, $A \subset X$ in colour 1 i.e. $P \cup A$ isomorphic to $H_{1}$ in colour 1 or at least one $j$, $(2 \leqslant j \leqslant n), \quad H_{j} \subset X$ in the $j$-th colour.
(b) Let $H=\left(H_{1}, H_{2}, \ldots, H_{n}\right) \in \mathscr{L}^{n}$ where $H_{i}=A_{i} \cup B_{i}$ and the $B_{i}$ 's are one-point graphs. We prove that the existence of $C_{0}\left(H_{1}, \ldots, H_{n}\right)$ follows from the existence of $C_{0}\left(H_{1}, A_{2}, \ldots, A_{n}\right)=t_{1}$, $C_{0}\left(A_{1}, H_{2}, A_{3}, \ldots, A_{n}\right), \ldots, C_{0}\left(A_{1}, \ldots, A_{n-2}, H_{n-1}, A_{n}\right)=t_{n-1}$, $C_{0}\left(A_{1}, \ldots, A_{n-1}, H_{n}\right)=t_{n}$ which was proved in (a). Let $G \in \mathscr{K}_{s}(n)$ and
(ii) $\alpha(G)>\sum_{i=1}^{n} t_{i}+1$.

For any $P \in V(G)$ let

$$
F_{i}=\{R: R \in V(G), R P \text { edge has colour } i\}
$$

We have $\alpha\left(F_{i}\right) \geqslant t_{i}$ for at least one $i$ (because of (ii)) so $H_{i} \subset F_{i}$ in the colour $i$ or $A_{j} \subset F_{i}$ in the colour $j$ for some $j \neq i$ and $P \cup A_{j}$ isomorphic to $H_{j}$. Therefore $H \in \mathscr{H}_{s}$ and the statement $\mathscr{L}^{n}(n) \subset \mathscr{H}_{s}$ is proved.
(c) $\overline{\mathscr{L}}^{n}(n) \subset \mathscr{H}_{s}$ is proved in the following way: let $H=\left(H_{1}, \ldots, H_{n}\right) \in \overline{\mathscr{L}}^{n}(n) \cdot$ and $\quad H_{i}=A_{i} \cup B_{i}$. We define $H^{\prime}=$ $=\left(H_{1}^{\prime}, \ldots, H_{n}^{\prime}\right)$ as follows: $H_{i}^{\prime}=A^{\prime} \cup B_{i}$ where $\left|V\left(A^{\prime}\right)\right|=\sum_{i=1}^{n}\left|V\left(A_{i}\right)\right|$ and $A^{\prime}$ is a complete graph. $H^{\prime} \in \mathscr{L}^{1}(1)$ implies that $H^{\prime} \in \mathscr{H}_{s}$ i.e. $C_{0}\left(H^{\prime}\right)$ exists. Let $G \in \mathscr{K}_{s}(n)$ for which
(iii) $\alpha(G)>C_{0}\left(H^{\prime}\right)$.

Condition (iii) implies that $H_{i_{0}}^{\prime} \subset G$ in the colour $i_{0}$ for at least one $i_{0}$, that is every edge between $A^{\prime}$ and $B_{i_{0}}$ has colour $1,2, \ldots$ $\ldots, i_{0}-1, i_{0}+1, \ldots, n$. The number of edges of this type is $\sum_{i=1}^{n}\left|V\left(A_{i}\right)\right|$ so we can choose for some $j \neq i_{0} \quad\left|V\left(A_{j}\right)\right|$ edges from them. The subgraph spanned by these edges is isomorphic to $H_{j}$ so our statement follows.

Proof of Proposition 1. Let $H_{1}=\left(H_{1}, \ldots, H_{n}\right) \in \mathscr{D}^{*}$ and suppose that $H_{1}$ and $H_{2}$ are empty graphs. Let $G \in \mathscr{K}_{s}(n)$ and $H^{\prime}$ be a complete graph so that $\left|V\left(H^{\prime}\right)\right|=\max \left(\left|V\left(H_{1}\right)\right|,\left|V\left(H_{2}\right)\right|\right)$. If $\left.\alpha(G)\right\rangle$ $>R_{0}(\underbrace{H^{\prime}, H^{\prime}, \ldots, H^{\prime}}_{n \text { times }})$ then $G$ will contain $H^{\prime}$ in the colour $i$ for at least one $i$. Because of $i \neq 1$ or $i \neq 2$ we have $H_{1} \subset G$ or $H_{2} \subset G$ in the colour 1 or 2 respectively.

Note that $\mathscr{D}^{*}$ makes $\mathscr{H}_{s}$ asymmetric.
Proof of Theorem 6. Let us suppose that $H=\left(H_{1}, H_{2}, \ldots, H_{n}\right) \in$ $\in \mathscr{H}_{s}$. We can assume that $H_{2}, \ldots, H_{n}$ are not empty graphs (cf. Proposition 1). Let $X_{k}$ be the complete $k$-partite graph containing $k^{2}$ evenly ditributed points and let $Y_{k}^{l}$ be a $k$-chromatic graph in which every circuit has length $>l,(l \geqslant 3)$. We will consider $X_{k}$ and $Y_{k}^{l}$ as elements of $\mathscr{K}_{s}(n)$ where the edges of the graph have colour 1 and the edges of
the complement have colour 2. $\alpha\left(X_{k}\right) \rightarrow \infty$ if $k \rightarrow \infty$ so $H \in \mathscr{H}_{s}$ implies that $H_{1} \subset X_{k}$ or $\bar{H}_{2} \subset X_{k}$ in colour 1 and 2 respectively for $k \geqslant k_{0}$ i.e.
(i) $H_{1}$ or $\bar{H}_{2}$ is a complete $k$-partite graph.

Similarly $\alpha\left(\bar{X}_{k}\right) \rightarrow \infty$ if $k \rightarrow \infty$ hence
(ii) $H_{1}$ or $\bar{H}_{2}$ is the complement of a complete $k$ partite graph.

By the same argument $\left(\alpha\left(Y_{k}^{l}\right) \rightarrow \infty\right.$ and $\alpha\left(\bar{Y}_{k}^{l}\right) \rightarrow \infty \quad$ if $\left.k \rightarrow \infty\right)$ we have
(iii) $H_{1}$ or $\bar{H}_{2}$ : contains no circuit.
(iv) $H_{1}$ or $\bar{H}_{2}$ is a graph the complement of which contains no circuit.

Let us analize which possibilities hold for $H_{1}$ :
(a) (i), (ii), (iii), (iv) hold for $H_{1}$ or none of these - that is in this case $\left(H_{1}, H_{2}\right) \in \mathscr{D}$.
(b) The following four possibilities
(i) is true
(ii) is true
(i) is false
(ii) is false
(c) If (i) and (iii) or (ii) and (iv) hold for $H_{1}$ then

$$
\left(H_{1}, H_{2}\right) \in \mathscr{L}^{2} \cup \overline{\mathscr{L}}^{2} .
$$

(d) If (i) and (iv) or (ii) and (iii) hold for $H_{1}$ then

$$
\left(H_{1}, H_{2}\right) \in Q^{2} \cup \bar{Q}^{2}
$$

(e) All the remaining cases implies that $\left(H_{1}, H_{2}\right) \in \mathscr{A}(2) \cup \overline{\mathscr{A}}(2)$.

The cases (a)-(e) show that $H \in \mathscr{H}_{s}-\mathscr{D}^{*}$ involves $\left(H_{i}, H_{j}\right) \in$ $\in \mathscr{D} \cup \mathscr{T}(2) \cup \overline{\mathscr{T}}(2) \cup \mathscr{L}^{2} \cup \overline{\mathscr{L}}^{2} \cup Q^{2} \cup \bar{Q}^{2} \cup \mathscr{A}(2) \cup \overline{\mathscr{A}}(2)$ for any
$1 \leqslant i, j \leqslant n$. From this the theorem easily follows.
Proof of Theorem 7. The upper bound follows from Theorem 8. The lower bound can be derived by examining a special $k$-chromatic graph without triangle, namely the Mycielski-graph. [4]

Proof of Theorem 8. We prove by induction on $n$.
(a) $n=3$. Let $P \in V(G)$, we denote the set of points connected with $P$ by $A$ and $B=V(G)-(A \cup P)$. Let $B=\bigcup_{i=1}^{t} B_{i}$ where the $B_{i}$-s are the components of $B$. If for every $B_{i},\left|V\left(B_{i}\right)\right|=1$ then $G$ would be 2-chromatic. Hence there is a $B_{i_{0}}$ so that $\left|V\left(B_{i_{0}}\right)\right| \geqslant 2$. The connectivity of $G$ implies the existence of a $P \in A$ and an $R \in V\left(B_{i_{0}}\right)$ so that $P R \in E(G)$. Finally we can choose an $S$ from $V\left(B_{i_{0}}\right)$ so that $(R, S) \in E(G)$. The path $[P, Q, R, S]$ has the required property.
(b) The induction is similar to step (a): let $P$ be an arbitrary point in a $n+1$-chromatic connected graph which contains no triangle and $A$ and $B$ are defined as in part (a). Let $B^{\prime}$ be an $n$-chromatic component of $B$. (There exists such a component because $G$ is $n+1$ chromatic). There is a point $Q \in V(A)$ so that $Q$ is connected with some point of $B^{\prime}$ because $G$ is connected. Let us consider the subgraph $Q \cup B^{\prime}$ in $G$. It is $n$-chromatic at least, connected and contains no triangle - hence there is a path of $n+1$ points in it starting from $Q$ by the inductive hypothesis. The edge $P Q$ extends this path to length of $n+1$ which proves our statement.

Proof of Theorem 9. See [3].

## REFERENCES

[1] A. Gyárfás - J. Lehel, A Helly-type problem in trees, Combinatorial Theory and its Appl. (Colloq, Math. Soc. J. Bolyai 4) Amsterdam - London, 1970, 571-584.
[2] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc., (2) 30 (1929/30), 264-286.
[3] A. Gyárfás, A Ramsey-type theorem and its application to relatives of Helly's theorem, Periodica Math. Hungar., 3 (1973), 261-270.
[4] J. Mycielski, Sur le coloriage des graphs. Colloq. Math., 3 (1953), 161-162.

