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0. INTRODUCTION 

In this paper I should like to sketch some aspects of a Ramsey-type 

problem (part 2.) which arose from a geometrical problem of T. G a 11 a i 

[ 1]. Let me present the rough s~eleton of the theorems discussed later. 

If we colour the edges of a complete graph G with n colours in 

such a way that we need a sufficiently large number of one-coloured com
plete subgraphs of G in order to cover G's vertices then for at least one 
i, ( 1 ~ i ~ n) G will contain a prescribed subgraph coloured with the 
i-th colour. 

1. NOTIONS AND NOTATIONS 

Graph G,H, ... 

Vertex and edge set V( G), E( G) 

Subgraph GCH 

finite, undirected, no loop~ and multiple 

edges 

always induced (spanned) subgraph 
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The set of n-col
oured complete 
graphs 

.?f'(n) 

Covering number of 'a( G) 
an n-coloured com-
plete graph G 

'S· 

complete graphs the edges of which 

are coloured with n colours. It is al
lowed to colour an edge with more 
than one colour. 

it is the .smallest k so that V( G) = 
k 

= U V( G i) and G i is a one-coloured 
i= 1 

complete graph. 

the set of all graphs 

the set of complete graphs 

denotes the Cartesian product of n 

copies of :If where ,?If is a set of 
graphs 

= {fl: HE :If} where ,Yf is a set of 
graphs 

2. THE BASIC PROBLEM AND ITS RELATION TO THE 
ORIGINAL RAMSEY PROBLEM 

2.1. According to a well-known theorem of Ramsey [2] for any 
K = (K1 , K 2 , •.• , Kn) E :J{n there exists a natural number R = R(k) 

with the property: 

If G E Jf"(n) and I V(G) I~ R 

then for at least one i, (1 ~ i ~ n) G contains a subgraph in the i-th 
colour isomorphic to Kr The smallest R with the above property is 
called the Ramsey-number belonging to K1 , K2 , ... , Kn and it is denoted 
by R

0
(K). 

Our basic problem is the following: 

2.2. To describe the set ,rt) c t§ n ·for which the following statement 
holds 
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For every H = (H1, H2 , • •. , Hn) E :Yf there .exists a natural number 
R 1 with the property: 

If G E Jf'(n) and a(G) ~ R 1 then for at least one 

subgraph in the i-th colour isomorphic to Hi" 
G contains a 

The smallest R 1 with the above property should be called the Ramsey 
covering-number belonging to H.' It is denoted by C

0 
= C

0
(H). 

In case of HE :;t·n the following trivial inequality holds between the 
Ramsey-numbers and the Ramsey covering-numbers: 

3. SOME RESULTS AND AN OPEN QUESTION 

Let H c C§ n be the set defined in 2.2. The following result was 
proved in [3]. 

Theorem 1. Let Q be the set of graphs the complements of which 
contain no adjacent edges, then 

Let us continue with the central open question: 

Question 1. Let f!li be the set of graphs the complements of which 
contain no circles and let d(n) be the set of n-tuples formed by taking 
n - 1 components from Jf. and one from ;)£. Is it true that 

d(n) c Jf'? 

(Special cases will be considered in part 4 and 5.) 

There are some degenerate elements of .It. 

(I) The n-tuples of graphs at least one component of which is the 
one-point graph or the two-point graph without edge. 

(2) The n-tuples where at most one component differs from the two
point complete graph. 
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The n-tuples listed in ( 1) and (2) are called the degenerate elements 
of Je and we deno.te them by ~. 

Theorem 2. If H= (H1 , ... ,Hn) fl. d(n) u Qn u ~ then Hf/. £. 

Theorem 2 show~ that the affirmative answer to Question 1 would 
settle the problem in 2. 2. 

4. STRONG COLOURINGS 

Now we investigate the case when we colour the edges of the com
plete graphs with the restriction that every edge has exactly one colour. 
We call such a colouring "strong". The set of str9ngly n-coloured com
plete graphs will be denoted by %/n). One more notation: if H = 

= (H1 , ... , Hn) then H denotes (H1 , ... , Hn ). Let .Its be defined 
on the analogy of 2.2. if we write %/n) instead of X"(n). It is obvious 
that :If c :If s and the following theorems show that the inclusion is 
proper. 

Theorem 3. Qn c Yf s ( Q defined in Theorem 1 ). 

Question 2. d(n) u d(n) c :Its? (d(n) defined in Question 1). 

Theorem 4. Let ff4 k be the set of complete k-partite graphs and 

T be the three-point graph with two edges. Let !Y (n) be the set of n

tuples with one component from :?J k and the others are sub graphs of T. 

Then !T(n) c .Yes and ff(n) c Yfs. 

Theorem 5. Let 2 be the set of graphs in the form A u B where 

A n B = cp, A is a complete graph and B is an at most one-point graph. 
Then !£In c /f and i2 n c .:If" . s s 

· Proposition 1. If ~* denotes the n-tuples of graphs where at least 

two components are empty graphs, then ~* c .Yes. 

Theorem 6. If Hf/. :If U Qn U d(n) U .'Y{n) u ff(n) U ,:pn u jjn u 

U ~* then :If fl. :lf
8

• 
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5. PROPERTIES OF GRAPHS WITH LARGE CHROMATIC 

NUMBER AND WITHOUT COMPLETE k-GON 

Let G be a graph. We may consider G as a strongly two-coloured 
complete graph by taking the edges of G (G) as coloured with the first 

(second) colour. In this formulation the special case n = 2 of Question 2 
is equivalent with 

Question 3. Let F be a forest and k a natural number. Is there a 
natural nun1ber l = l(F, k) with the property: if G is a graph without a 
complete k-gon and x( G) ~ l then G con taints F as a sub graph. 

J . G e r 1 i t s proved first (oral communication) that the answer is af

firmative to Question 3 if k = 3 and F is a path. 

Let Xo = Xo (F, k) be the smallest number with the above property. 
Now we can state 

Theorem 7. 1 F~ + 1 ~ x0 (F, 3) ~I Fl- I (F is a path and 

IF!~ 4). 

L. Lovas z showed that x0 (F, k) exists if F is a path for arbi
trary k. The existence of x

0 
(F, k) is proved otherwise only for I F I ~ 5 

and k = 3 and for the (trivial) case when F is a star. 

The upper bound in Theorem 7 follows from the following theorem. 

Theorem 8. Let G be a connected n-chromatic graph Which con

tains no triangle and P and arbitrary point in G. There is a path of 

n + 1 points in G without diagonals. (n ~ 3). 

6. HELL Y STRUCTURES 

A pair (X, d) is called Helly structure if X is a set, d is a fami
ly of subsets of X and there exists a natural number t with the property: 

If !A is a finite subfamily of d any two members of J4 have 

non-empty intersection then there exists a set P c X so that I Pi ~ t 
and B n P #: ¢ if B E !A. 
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Let (X 1 , d 1 ), ... , (Xn, .91 n) be Helly structures and Xi n Xj = ¢ 
n 

for i * j. We define the sum Z (X., d,) = (X, d) in the following 
.· i= 1 l 

n 
way: X= U X., .9JI = {(A 1 ,A2 , ••. , A ): A. Ed.}. 

i= 1 l · n 1 z 

The following theorem connects the Helly structures and the set 

defined in 2. 2. 

Theorem 9. Let (Xl' .91 1 ) ... (Xn, d n) be Helly structures and 

suppose that the graph Hi can not be the intersection-graph of sets of d i 
n 

(for 1 ~ i ~ n). In thi~ case (H1 , ... , Hn) E ::if implies that i~ (Xi, .9JI ;) 

is also a Helly structure. 

Examples and applications of this theorem can be found in [3]. 

7. PROOFS 

· In. this section we present the proofs of the theorems discussed above. 

Theorem 1 was proved in [ 3]. 

For the proof of Theorem 2 we have to define some special m-col
oured (or 2-coloured) complete graphs. The graph Uk E x·(m) looks like 

this: 

Let sk be a graph containing no triangles and the chromatic number of 
which is k. Let I V(Sn) I = nk and A be a copy of Sk. Replace the 

vertices of A by Bl'B2 , ••• ,Bnk where B is a copy of Sk. All 
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edges between Bi and Bi are coloured with colour 1 if the corresponding 
vertices of A are connected by an edge. The edges of B. are coloured 

l 

with colour 2 and all the remaining edges are coloured by 1, 2, . . . and m. 

Wk E %(2) is defined as follows: V(Wk) = {wii}~.i= 1 . The edge 

connecting the vertices wii and w
78 

is coloured with colour I if i ::/= r 
and coloured with colour 2 if j =F s. 

w: E %(2) has the points {wii}7,i= 1 . The edge between wii and 
w is coloured with 1 if j = s, otherwise it is coloured with colour 2. rs 

W3. 
1" 

2 -----------

--------- ___. 

2 .....------------ ......_......_ 

. k 
Xk E .% (2) will be defined as follows: V(Xk) = U B. where B. 

i= 1 l l 

is a copy of Sk. The edges of B; are coloured with the colour I, the 
edges between different B;'s have colour 2, the remaining edges are two

coloured. 
k 

We define yk E .X'(2): V(Yk) = U Bi where the B.'s are again 
i= 1 l 
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copies of Sk. Let V(Bi) = {bi, ... , b~ } and the edges of Bi have 
k 

colour 1, the edge between b~ and b{ is coloured with 2 for i -=/= j and 
1 ~ t ~ nk. All the remaining edges are hi-coloured. 

Finally zk wil,l be a graph which· does not contain a circuit of length 
less than or equal to l, and the chromatic number of which is k. The 
edges of zk are coloured with 2 the complement-edges with colour 1. 

2 ,.,,.,......-------------

@/: ___ @--__ :':EJ .... 
I ---

/ 

2 

--...._ ______ ._. .... _...., 

The graphs considered above are special n-coloured complete graphs. 
If Tk denotes any one of Uk, Wk, W~, Xk, yk, zk then it has the prop
erty: if k-+ oo then a(Tk)-+ oo so it follows that, 

involves that H. c Tk 
l 

for some k in the i-th colour. 

Now we turn to the proof of The?rem 2. Suppose that 

H = (Hl' H 2 , ••• , Hn) fl. .xl(n) u Qn u ~. 
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We prove that H fJ. J1t. We investigate two cases. 

I. More than one Hi are empty graphs. Let H 1 , H 2 , ... , Hm be 
empty graphs (m ~ 2) and Hm + 1 , ... , Hn be non-empty .. Clearly 
Hi q_ Uk for every k in the colour i, ( 1 ~ i ~ n) so we conclude that 
Ht;. :Yt by(*). 

II. We can choose H 1 , H2 so that Hi is non-empty for 3 ~ i ~ n 

and H 1 , H2 contains at least three vertices. A, B, C will denote the fol
lowing graphs: 

0 

A: 
0 0 0 

From H fJ. d (n) u Qn follows that at least one of the following six 
possibilities holds: 

(i) ii1 contains a circuit of length l and H
2 

contains a triangle 

(ii) A c H 1 and A c H 
2 

(iii) B cH1 and B cH2 

(iv) B c H
1 and A cH2 

(v) Cc H 1 and A cH2 

(vi) CcH1 and B c H 2 

(i) is impossible because H1 , H2 (/.. zk in the first and second colour 
respectively Hi q_ zk for i ~ 3 because Hi is non-empty. 

Similar argument shows that the cases (ii) through (vi) are impossible. 
We can show that th~ graphs A, B, C which are subgraphs of H1 and 
H2 are not contained in our special graphs. In the cases (ii), (iii), (iv), (v), 

(vi) we use the graphs uk' wk' yk' xk' w~ respectively. 

Proof of Theorem 3. Let H = (H1 , H 2 , ... , Hn) E Qn that is Hi 

can be written as the union of ai points and b; disjoint edges. Let 
a= max a. and b = (n- 1) max b.+ 1. Q* denotes a graph the com-

i l i l 

plement of which consists of a disjoint vertices and, b disjoint edges. 
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Clearly (cf. Theorem 1) Q* E Qn. Let G E %/n) for which a( G)> 

> C0 (Q*, Q*, ... , Q*). In this case G will contain Q* in the i-th coi
n times 

our for some i. It ·is obvious (by the definition of a and b) that this 

subgraph contains ~· for some j ::/= i. 

Proof of theorem 4. 

I. We prove · .:T(n) C Jf
8 

b-y induction on n. The case n = 1 is 

trivial. Assuming that !T(n) c :If we prove that !T(n + 1) c Y'f' . Let s s 

H1 = ... = Hn = /'... and Hn + 1 be the complete k-partite graph which 
has k points in its cl&sses. (It is clear that every k-partite complete graph 

is a subgraph of such a Hn + 1 for some k.) 

Let GE% (n+ 1) and s 

(i) 

a(G) > ((C0 (H2 , H 3 , ••. , Hn, Hn+ 1)- l)(k[(k- l)(n- 1) + 1]- 1) + k. 

If H; q. G in the i-th colour for i = 1, 2, ... , n then G must be 
written as the union of disjoint complete graphs coloured by the i-th col
our (the edges not belonging to these complete graphs are not coloured 

with colour i). Let us denote these complete graphs in colour 1 by 
'i 

A 1 , A 2 , ... , A, and let V(A.) = U a1
:. 

l j= 1 l 

We can assume that I V(A;) I~ I V(Ai) I for i ~ j. The number 

l{s: lA I~ x}l is denoted by t . We define Bu 's as the "rows" of A.'s 
S X ,I 

r t 

that is B = U ai. We can write V(G) = U A. u U B and here the 
u i= t + 1 u i= 1 l u u 

A/s span complete graphs in colour 1 and the Bu 's are n-coloured complete 

graphs so Bu can be covered by at most C0 (H2 , H3 , ... , Hn, Hn + 1 ) - 1 
complete one-coloured graphs by the inductive hypothesis. We get a cover

ing of G by at most 

(ii) tx + ( C0 (H 2 , ... , Hn + 1 ) - 1 )(x -- 1) complete graphs and com

paring (i) and (ii) we conclude that 

. 
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(iii) ·tx ~ k if x = k[(k- 1)(n- 1) + 1] that is for 1 ~ i ~ k 

I V(A;)I ~ k[(k -.1)(n- 1) + 1]. Let us choose the points ai, ... ,a~ 
from V(A 1 ). These points are connected with at most k(n - 1) points 

of V(A.), (2 <;, j <;, k) in the colours 2, 3, ... , n. We omit these points 
J 
k 

from U V(A .). Now we oontinue by choosing af , af , ... , af from 
i= 2 l ' 1 2 k 

k 

the reduced set V(A 2 ) and remove from i~3 V(A;) the points which 

are connected with a. by edges of 2, 3, ... , n colour. The condition 
ln 

I V(A;) I~ k[(k- 1 )(n- 1) + 1], (1 <;, i <;, k) ensures that the process can 

be repeated until we have chosen k points from Ak. The graph spanned 
by the resulting vertex-set is isomorphic to Hn + 1 in the n + 1-th colour. 

II. We prove here that Y(n) c £
8

• 

(a) Y(2) c .Yt' follows from .r(2) c :It' by symmetry. s s 

(b) for n > 2 let H 1 = H 2 = ... = Hn _ 1 = T and Hn E iik. 

Let G E x·/n) for which 

We prove that in this case Hi c G in the colour i for at least one 

i.e. H= (H1 , ... ,Hn)E J~8 • If there is A,B, CE V(G) so that AB 

and A C edges have different colour from the colour-set 1, 2, ... , n - 1 

then Hi c G for some i <;, n - 1. Otherwise V(G)- P =Xu Y for an 

arbitrary P ~ V( G) where the edges between P and X have colour i, 

(i <;, n - 1) and the edges between P and Y have colour n. Moreover 

the edges between X and Y have to be of colour i and the edges in 
Y have to be of colour n. The edges of X are coloured with colour i 

and n. We conclude that the set X spans a two-coloured complete graph 

and P u Y spans a one-coloured complete graph. a(X) ~ C0 (H
1

, Hn) + 1 

by condition (iv) so we can apply (a) for X which proves our statement. 

The proof of Theorem 5. 

(a) First we prove theorem for the case and when only one B is 

non-empty, that is 
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are complete graphs. 

Let G E .A''/n) and 

(i) a(G)> [R 0 (A,H2, ... ,Hn)]n- 1. 

We assert that there is · P E V( G) and a colour i for 2 < i < n so 

that at least R 0 (A, H 2 , •.• , Hn) edges starting from P have colour i. 

Supposing the contrary, the graph G is considered as a one-coloured 
graph in the colour 2. Every vertex of G has degree of at most 
R 0 (A, H 2 , ... , Hn)- 1 so G is at most R

0
(A, H 2 , .. . , Hn )-chromatic 

t 

i.e. V(G) = . U A
1
. where t < R 0 (A, H 2 , ... , Hn) and AtE ;;t'

8
(n - 1 ). 

. J= 1 
Repeating this argument we see that G can be covered by at most 
[R 0 (A, H 2,: . . , Hn )]n- 1 complete graphs of colour 1 which contradicts 
to (i). 

We can assume therefore the existence of PE V(G) and X c V(G) 

such that the edges between P and X are coloured with i, (2 < i < n) 

and I Xi~ R 0 (A, H 1 , ... , Hn). Applying Ramsey's theorem, A c X in 
colour 1 i.e. Pu A isomorphic to H 1 in colour 1 or at least one j, 

(2 < j < n), Hi c X in the j-th colour. 

(b) Let H= (H1,H2 , ... ,Hn)E !fn where Hi= Ai UBi and the 
B,.'s are one-point graphs. We prove that the existence of C0 (H1 , ... , Hn) 

follows from the existence of C0 (H 1 , A 2 , ... , An) = t 1 , 

Co(A1,H2,A3, ... ,An), ... ' Co(A1, ... ,An-2'Hn-1'Anf= tn-1' 

C0 (A 1 , ... ,An-l'Hn)= tn which was proved in (a). Let GE %/n) 
and 

n 

(ii) a( G) > Z t. + 1 . 
i= 1 l 

For any P E V(G) let 

Fi = {R: R E V( G), RP edge has colour i} . 
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We have cx.(F;) >: ti for at least one i (because of (ii)) so Hi c Fi 

in the colour i or A. c F. in the colour j for some j =I= i and P u A. 
I z I 

isomorphic to H.. Therefore HE :If and the statement !t' n (n) c £ 
I s s 

is proved. 

(c) Jin (n) c; .Yf
8 

is proved in the following way: 

let H = (H1 , ... , Hn) E };n(n) ·and Hi= A; u B;· We define H' = 
n 

= (H~, .... , If,) as follows: H~ =A' u B. where I V(A') I= Z I V(A;)I 
l l i= 1 

and A' is a complete graph. H' E .!£' 1(1) implies that H' E :lf
8 

i.e. C
0

(H') 

exists. Let G E Jf' (n) for which s 

Condition (iii) implies that H~ c G in the colour i0 for at least zo . 
one i0 , that is every edge between A' and B. has colour 1, 2, ... zo 
... , i0 - 1, i0 + 1, ... , n. The number of edges of this type is 

n 

i~ I V(A;) I so we can choose for some j =I= i0 I V(Ai) I edges from them. 

The subgraph spanned by these edges is isomorphic to Hi so our state
ment follows. 

Proof of Proposition 1. Let H 1 = (H1 , ... , Hn) E ~* and suppose 

that H1 and H2 are empty graphs. Let G E %/n) and H' be a 
complete graph so that I V(H') I = max (I V(H1 ) I, I V(H2 ) 1). If a( G)> 
> R 0 (If, H, ... , H') then G will contain H in the colour i for at 

n times 
least one i. Because of i =I= 1 or i =I= 2 we have H1 c G or H 2 c G 

in the colour 1 or 2 respectively. 

Note that ~* makes Jt
8 

asymmetric. 

Proof of Theorem 6. Let us suppose that H = (H 1 , H 2 , ... , H n) E 

E .Yt
8

• We can assume that H2 , •.• , Hn are not empty graphs (cf. Prop
osition 1 ). Let X k be the complete k-partite graph containing k2 evenly 
ditributed points and let Y£ be a k-chromatic graph in which every cir
cuit has length > l, (l >: 3). We will consider Xk a~d Yi as elements 
of x· (n) where the edges of the graph have colour I and the edges of s 
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the complement have colour 2. a(Xk)-+ oo if k-+ oo so HE £
8 

implies 
that H1 c Xk or H2 c Xk in colour 1 and 2 respectively for k?;;!: k0 
i.e. 

have 

(i) H1 or ii.2 is a complete k-partite graph. 

Similarly a(Xk)-+ oo if k-+ oo hence 

(ii) H1 or H2 is the complement of a complete k partite graph. 

By the same argument (a( Yk) -+ oo and a( Yk) -+ oo if k -+ oo) we 

(iii) H1 or fi2 : contains no circuit. 

(iv) H1 or H2 is a grapli the complement of which contains no 
circuit. 

Let us analize which possibilities hold for H 1 : 

(a) (i), (ii), (iii), (iv) hold for H1 or none of these - that is in this 
case (H1 , H2 ) E ~-

(b) The following four possibilities 

i~) :: ::: l 
(i) is false 

for H 1 implies that (H1 , H2 ) E 5""(2) u $-(2). 

(ii) is false 

(c) If (i) and (iii) or (ii) and (iv) hold for H 1 then 

2 -2 (H1,H2)E.P U.P. 

(d) If (i) and (iv) or (ii) and (iii) hold for H1 then 

2 -2 (H1,H2)EQ UQ. 

(e) All the remaining cases implies that· (H1 , H 2 ) E d(2) u d (2). 

The cases (a)- (e) show that HE. :Yf
8 

- 2)* involves (Hi, Hj) E 

E ~ u 5""(2) u S"(2) u 2 2 u !1 2 u Q2 u Q2 u d(2) u d(2) for any 
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1 ~ i, j ~ n. From this the theorem easily follows. 

Proof of Theorem 7. The upper bound follows from Theorem 8. The 
lower bound can be derived by examining a special k-chromatic graph 
without triangle, namely the Mycielski-graph. [ 4] 

Proof of Theorem 8. We prove by induction on n. 

(a) n = 3. Let P E V( G), we denote the set of points connected 
t 

with P by A and B = V(G)- (Au P). Let B = U B. where the 
i= 1 l 

B;-s are the components of B. If for every Bi, I V(B;) I= 1 then G 

would be 2-chromatic. Hence there is a B
1
• so that I V(B. ) 1 ~ 2. The 
0 10 

connectivity of G implies the existence of a P E A and an R E V(B i ) 
0 

so that PR E E( G). Finally we can choose an S from V(B; ) so that 
0 

(R, S) E E(G). The path [P, Q, R, S] has the required property. 

(b) The induction is similar to step (a): let P be an arbitrary point 
in a n + 1-chromatic connected graph which contains no triangle and A 

and B are defined as in part (a). Let B' be an n-chromatic component 
of B. (There exists such a component because G is n + 1 chromatic). 
There is a point Q E V(A) so that Q is connected with some point of 
B' because G is connected. Let us consider the subgraph Q u B' in G. 

It is n-chr01natic at least, connected and contains no triangle - hence 
there is a path of n + 1 points in it starting from Q by the inductive 
hypothesis. The edge PQ extends this path to length of n + 1 which 
proves our statement. 

Proof -of Theorem 9. See [3]. 
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