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HOW TO ORIENT THE EDGES OF A GRAPH? 

A. FRANK- A. GYARFAS 

I. INTRODUCTION 

Let G( V, E) be a finite undirected graph with vertex set V and 
edge set E. Multiple edges are allowed but loops are excluded. The present 
paper examines orientations of the edges (the orientation of an edge means 
a replacement of that undirected edge by a directed one) under which the 

-+ 
resulting directed graph G has certain properties. These properties are: A, 
A and B, A and C where 

-+ 
A: the outdegrees of G lie between two bounds given in advance. 

(Different vertices can have different bounds.) 
-+ 

B: G is strongly connected. 
-+ 

C: G has a directed tree with a given root. 

II. DEFINITIONS 

p(V') and B(V') will denote the indegree and outdegree of the ver
tex subset V' in a directed graph. If V' contains only one vertex x we 
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shall write p(x) and 8(x) instead of p({x}) and 8({x}). We shall often 

use the well-known inequality: 

which holds for 8 as well. d(x) denotes the degree of vertex x in an 
undirected graph. 

u(x) and l(x) denote integer functions defined on the vertices of an 
undirected graph. 

The shorter terms graph and digraph will be used throughout the pa
per instead of undirected and directed graph. 

III. ORIENTATIONS WITH BOUNDS 

Theorem 1. A graph G( V, E) has an orientation satisfying o(x) < 
< u(x) for x E V if and only if 

(1) I Ev' I < 2; u(x) for all V' ~ V 
xEV' 

where E V' denotes the set of edges in V'. 

Proof. The necessity of ( 1) is obvious therefore we restrict ourselv_es 

to proving the sufficiency. The proof is an algorithm srarting from an ar
bitrary orientation which may contain "wrong" vertices, that is vertices 
with 8(x) > u(x). At every step the algorithm yields a "better" orienta-

, tion or a subset V' violating ( 1 ). An orientation is "better" if the sum 

of "surpluses" on the wrong vertices 

.Z (8(x) - u(x)) 
xis wrong 

is smaller. 

Let w be a wrong vertex: o(w) > u(w). The set of vertices which 
can be reached from w by a directed path is denoted by V'. There 

are two cases: 

A. There is a vertex x E V' for which 8(x) < u(x). In this case we 
choose a (directed) path from w to x and reverse the orientations along 
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this path. Clearly we gain a "better" orientation because w is better, x 
is not wrong and the outdegrees of the other vertices on the path remained 
unchanged. 

B. o(x);;;::: u(x) for ·every X E V'. In this case I EV' I= z o(x) 
xEV' 

because no edge leaves V' but . Z o(x) > _L; u(x) since o(w) > u(w) 
xE V' xE V' 

and o(x);;;::: u(x) for any other vertex. The set V' therefore violates (1) 
and the proof is complete. I 

Theorem 2. The graph G( V, E) has an orientation satisfying 8(x) ;;;::: 

;;;::: l(x) if and only if 

(2) I Ev, I;;;::: Z l(x) for all V' ~ V 
xEV' 

where E V' denotes the set of edges incident to V'. 

Proof. We can define the function u(x) as u(x) = d(x)- l(x) and 
we can apply Theorem 1. It is easy to see that for this u(x) condition 
(1) is equivalent to (2) which proves the theorem.l 

Theorem 3. The graph G( V, E) has an orientation satisfying l(x) ~ 

~ o(x) ~ u(x) if and only if both (1) and (2) hold. {l(x) ~ u(x) for 

x E V is assumed. ) 

Proof. (1) and (2) are obviously necessary. Let us start from an ori
entation for which l(x) ~ o(x) for every x E V. ·(There exists such an 
orientation by Theorem 2.) If we apply the algorithm given in the proof 
of Theorem 1 with the function u(x) then, during the algorithm, the 
outdegree of a vertex x will decrease by one only if o(x) > u(x) which 
means that l(x) ~ o(x) holds after the algorithm. I 

Remark. The problems mentioned so far can be formulated as net
work-flow problems and our theorems follow from well-known results. We 
proved them in a direct way because they are suitable to prove our further 
results. 
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IV. STRONGLY CONNECTED ORIENTATIONS WITH BOUNDS 

Definition. A digraph is strongly connected if for any two vertices 

x, y there is a directed path from x to y. 

The following theorems are well-known: 

Theorem. A graph G has a strongly connected orientation if and 

only if G is bridgeless. 

Theorem. The digraph G is strongly connected if and only if 

o( V') > 0 for any proper subset V' of V. 

Now we consider strongly connected orientations for a given graph 

satisfying upper and lower bound conditions for the outdegrees. 

Theorem 4. The bridgeless graph G( V, E) has a strongly con11:.ected 

orientation satisfying o(x) ~ u(x) if and only if 

(4) I Ev,l + CG- v' ~ ~v,, u(x) for all V' ~ V 
XE 

where CG _ v' denotes the number of components in G - V'. 

Proof. Let us assume that we have a required orientation of G and 
consider a subset V' of · V. All the components of G - V' can be 

reached from V' by a directed path, therefore at least C G _ v' edges 
leave V'. It follows that at least I E V' I + C G _ v' edges have the origin 

in V'. On the other hand this number is at most Z u(x) from the 
xEV' 

condition so ( 4) is necessary. 

The sufficiency of ( 4) is proved by an algorithm similar to the one 

used in the proof of Theorem 1. The algorithm starts from an arbitrary 
strongly connected orientation of G. If we are lucky it has no "wrong" 
vertices (o(x) > u(x)) and we can stop. Suppose that w is wrong. There 
exists a vertex x with o(x) < u(x) because otherwise V' = V violates 

( 4). The strong connectivity guarantees at least one directed path from w 
to x. We distinguish two cases: 

A. There are two edge-disjoint paths from w to x. Let us reverse 
the orientations along one of the paths. The new orientation is clearly 
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strongly connected and is ))better" because the sum of surpluses on the 

"wrong" vertices is decreased by one. 

B. There are no two edge-disjoint paths from w to x. According to 
a variation of a well-known theorem of M e n g e r [ 1] there is an S x c V 

for which 

(i) x E Sx, w fl. Sx and p(Sx) = 1. 

We choose Sx maximal with property (i). 

Proposition 1. Let X, y be vertices so that o(x) < u(x), o(y) < 
< u(y) and construct S and S as shown before. S n S =I= </J im-x y X y 
plies S = S . 

X y 

Proof. Since 

1 + 1 ~ p(S n S ) + p(S u S ) ~ p(S ) + p(S ) = 1 + 1 
X y X y X y 

using the submodularity of p, therefore p(Sx n SY) + p(Sx u SY) = 2. 
Sx n SY and Sx u SY are non-empty so p > 0 on them, that is 

p(Sx u Sy) = 1 and hence Sx u Sy satisfies (i). The maximality of Sx 

and S implies S = S u S = S and the proposition is proved. I y X X y y 

Proposition 2. Sx and Sy is defined as before. Sx =I= Sy implies 

that there are no edges between Sx and SY. 

Proof. If ab is an edge from S x to S Y then p(S x u S Y) = 
= p(S x) = 1 which contradicts to the maximality of S x .I 

Let us define V' = V- U S . V' =I= </J because wE V'. We 
· 6 (x) < u (x) x 

show that V' violates ( 4). The two propositions imply that the compo-
nents of G- V' are the distinct sets Sx 's. By the definition of Sx there 
is exactly one edge from V' to every S x therefore exactly I E v' I + 
+ CG _ V' edges have the origin in V', that is 

I Ev' I+ CG- V' = ZV' o(x). 
xE 

The sum on the right side is greater than Z u(x) because the ver
xE v'' 

tices for which o(x) < u(x) are covered by the Sx 'sand o(w) > u(w). 
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We conclude that lEv. I+ CG- V' > xli-' u(x) that is V' violates con

dition ( 4).1 

Remark. The ~ethod used in the proof of Theorem 4 is really an al
gorithm since the sets Sx can be constructed easily. The Ford- Fulkerson 
labelling algorithm either assures the two edge-disjoint paths from w to 
x or gives a maximal S x . • We present here the algorithm in flowchart 
form (see Fig. 1) and note that all proofs of this paper can be presented in 
such a form. 

Theorem 5. A bridgeless graph G( V, E) has an orientation satisfying 

8(x) ~ l(x) for any x E. V if and only if 

(5) I EV' I- CG- V' ~ xli-' l(x) for all V' ~ V 

where E V' denotes the set of edges incident to V'. 

Proof. The details are left to the reader. The theorem is in duality 
with Theorem 4 and is based on the fact that the existence of the required 

orientation is equivalent to the existence of a strongly connected orienta
tion where 8(x) < d(x)- l(x). Choosing u(x) = d(x) - l(x) and applying 
Theorem 4 we can prove Theorem 5. I 

Theorem 6. A bridgeless graph G( V, E) has an orientation satisfying 

l(x) < 8(x) < u(x) if and only if ( 4) and (5) hold simultaneously. {l(x) < 
< u(x) is assumed for all x E V.) 

Proof. The conditions are obviously necessary. For the sufficiency 
we· consider a strongly connected orientation satisfying l(x) < 8(x) for 
all x E V. (Theorem 5 guarantees such an orientation.) Applying the al
gorithm of Theorem 4 we can reach the reqrtired orientation or a subset 
V' ~ V violating ( 4).1 

V. ORIENTATIONS WITH A ROOTED TREE AND BOUNDS 

In this section the strong connectivity is replaced by a weaker condi
tion: we try to find an orientation so that every vertex can be reached by 
a directed path from a specified vertex r (we shall say that the digraph 
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Start with any strongly 
connected orientation 

of G(V, E) 

V':= V 

Is there a w E V with 
8(w) > u(w)? 

] 

no 

STOP 
The orientation 

is good 

---------.yes 
t I -

Is there x E V' with 
8(x) < u(x)? 

yes 

STOP 
.~ The set V' violates 
no the condition 

Are there two edge-disjoint REVERSE 
paths from w to x? edges along one of r--

(Ford - Fulkerson r;;; paths from w to x 
labelling technique) j L_ _______ ___. 

t no 

S := the set of 
X . 

unlabelled vertices 

t 
VI·= V' -S . X 

Fig. I 
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has an r-tree), moreover the outdegrees lie between bounds given in ad
vance. 

Theorem 7. Let G( V, E) be a graph with a given vertex r and 

u(x) is an integer function on V G(V, E) has an orientation with an 

r-tree and satisfies o(x) ~ u(x) if and only if 

(7) 
- y 

lEv· I+ CG~ v· ~ ~~v· u(x) for all V' ~ V 

where CG _ V' is the number of components of G - V' which do not 

contain r. (CG- V' = CG- V' if rEV' and CG- V' = CG- V'- 1 if 
r(j_ V'.) 

Remark. In the theory of programming the notion of the flow-graph 
is well-known. A flow-graph is a directed graph which has an r-tree. In 
that case r represents the starting point of the computation. An important 
role is given to the flow-graphs where the outdegrees are at most 2. The 
problem of characterizing the "skeleton" of such a flow-graph arose. The
orem 7 gives the answer if we choose u(x) = 2. 

Proof. We prove the sufficiency - the proof of necessity is left to 
the reader. 

Choosing V' = (j>, condition (7) states that our graph is connected. 

We can orient it therefore to contain an r-tree. The algorithm starts from 

that orientation and tries to improve it i.e. to decrease Z (o(x) - u(x)) 

on the "wrong" vertices - and not to loose the property of having an r

tree. 

Let w be a wrong vertex (o(w) > u(w)) and V1 be the set of ver
tices which can be reached from w by a directed path. Two cases are 

\ 

distinguished: 

A. There is an X E vl with o(x) < u(x) . reachable with two edge
disjoint paths, one of t!J_em from w and the other is from r. In this case 
we reverse the orientation along the, path wx and we have a "better" 
orientation. 

B. If A is not true then by a version of Menger's theorem, and using 
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the fact that x can be reached from w and r, every x E V1 for which 
o(x) < u(x) is contained in a set Sx c V -with the properties: 

(ii) X E Sx; r, w fi. Sx; p(Sx) = 1. 

Let us choose the sets Sx 's to be maximal with property (ii). The 
following two propositions are analogous to those of used in the proof of 
Theorem 4 and their proofs are 'quite the same. 

Proposition 3. S n S =I= cf> implies S = S . 
X y X y 

Proposition 4. Sx =I= SY implies that there are no edges between Sx 

and S. 
y 

We define V2 = V- V1 . 

Proposition 5. V2 n Sx = cf> for any Sx. 

Proof. Assume that V2 n Sx =I= cf>. In this case clearly V2 =I= cf> and 
rE V2 . 

and it is a contradiction. I 

Proposition 6. There are no edges between V2 and Sx. 

Proof. It is clear that there are no edges from V1 to V2 • We 
know from (ii) that p(Sx) = 1 but the unique edge entering Sx is on 
the path wx which lies in V1 - therefore no edge can enter Sx from 

v2.1'1 

u 
XE V 1 

Now we define V' = V1 -

o (x) < u(x) 

Propositions 3-6 guarantee that the components of G- V' are ex
actly the different Sx 's and V2 if V2 =I= cf>. (V2 =I= cf> implies r E V2 ). 

The number of edges, therefore, with origin in V' is IE V' I + CG _ V' = 

= z o(x) but the right side is greater than z u(x) because o(x) ~ 
xE V' xE V' 

~ u(x) on V' and o(w) > u(w), so I Ev, I+ Cc ~ V' > Zv, u(x) which 
xE 
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contradicts (7). 

Theorem 8. A connected graph G( V, E) has an orientation with an 

r-tree and satisfying 8(x) ~ l(x) if and only if 

I Ev, I ~ _2;· · l(x) if r E V' ~ V 
XE V' 

(8) 

IEv·l- 1 ~ Z l():) if rff- V' ~ V 
xE V' 

where E V' denotes the edge-set incident to V'. 

Proof. We prove only the sufficiency. The proof proceeds on the 
same line as before. Starting from an orientation with an r-tree, we im
prove on it or we find a V' violating (8). Let w be a "wrong" vertex 
ie. 8(w) < l(w) and the set of vertices from which w is reachable by a 
directed path is denoted by V1 . Clearly r E V1 . If 8(x) ~ l(x) for eve
ry X E vl then vl violates the first part of (8). Clearly p( vl) = 0 
and therefore 

We can assume that there is at least one x E V1 with 8(x) > l(x). 

We have two cases: 

A. There are two edge-disjoint paths terminating at w and starting 
from x and r respectively. We can reverse the edges along the path xw 

and we get a better orientation without destroying the r-tree property. 

B. If A is false then a variation of -Menger's theorem guarantees an 
Sx for any X E V1 with D(X) > /(x) with the property: 

(iii) r, x E S.x, w ff- Sx and 8(Sx) = 1. : 

Choose S to be maximal with property (iii). 
X 

Proposition 7. y E V1 - Sx implies 8(y) ~ l(y). 

Proof. If 8(y) > l(y) for a y E vl - sx then sy is defined and 
1 + 1 = 8(S ) + 8(S ) ~ 8(S u S ) + 8(S n S ) ~ 1 + 1 which means 

X y X )-' X Y, 

that S u S satisfies (iii) which contradicts to the maximality of Sx .I 
X y 
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Proposition 8. Sx :) V- V1 . 

Proof. o(V- V1 ) = 0 hence Sx u (V- V1 ) satisfies (iii). I 

We prove that V' = V1 - Sx violates the second part of condition 

(8). Clearly r fl. V'. There is exactly one edge into -v' from S x, there-

fore I EV' I - 1 = 2: o(x) but the right side is less than .z l(x) be-
xE V' ' xE V' 

cause of Propositions 7 and 8 and o(w) < l(w) so V' really violates (8).1 

Remark. It is interesting to note that Theorem 8 does not follow 
from Theorem 7 by "duality" as was the case for Theorem 2 and Theo
rem 5.1 

We do not think Theorem 9 will surprise anyone: 

Theorem 9. A graph G( V, E) has an orientation with an r-tree satis

fying l(x) ~ o(x) ~ u(x) if and only if (7) and (8) hold simultaneously. 

Proof. Same as before.l 

VI. A GENERAL PROBLEM FOR SUBSET OUTDEGREES 

In this last section we formulate a generalization of the problems dis

cussed so far. Let l(X) be an integer function on the subsets of V, where 

G( V, E) is an undirected graph. 

Problem. What conditions should be imposed on G in order to pos
sess an orientation under which 

o(X) ~ l(X) for any X~ V? 

It is easy to see that all problems of this pfiper are special cases of 
this general problem. The strong connectivity, for example, is equivalent 
to o(X) ~ 1 for all X c V. 

The general problem is not solved but there are numerous interest
ing special cases. A theorem of Nash-Williams [2] answers the case 
l(X) = k. 

A forthcoming paper [3] of one of the authors (A. Frank) will 
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answer some further special cases e.g. when the vertices have lower and up
per bounds and a k-connected orientation is needed. Another special case 
is when l(X) is supermodular. 
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