On Graphs With Strongly Independent Color-Classes

A. Gyárfás, ${ }^{1}$ T. Jensen, ${ }^{2}$ and M. Stiebitz ${ }^{3}$
${ }^{1}$ COMPUTER AND AUTOMATION INSTITUTE hUNGARIAN ACADEMY OF SCIENCES KENDE U. 13-17
H-1111 BUDAPEST, HUNGARY
E-mail: gyarfas@luna.ikk.sztaki.hu
${ }^{2}$ INSTITUTE OF MATHEMATICS
UNIVERSITY OF HAMBURG BUNDESSTRAßE 55
D-20146 HAMBURG, GERMANY
E-mail: tommy@cs.rhul.ac.uk
${ }^{3}$ INSTITUTE OF MATHEMATICS ILMENAU TECHNICAL UNIVERSITY
PF 10565
D-98684 ILMENAU, GERMANY
E-mail: Michael.Stiebitz@mathematik.tu-ilmenau.de

Received September 5, 2001; Revised September 1, 2003

Abstract

We prove that for every k there is a k-chromatic graph with a k-coloring where the neighbors of each color-class form an independent set. This answers a question raised by N. J. A. Harvey and U. S. R. Murty [4]. In fact we find the smallest graph G_{k} with the required property for

Contract grant sponsor: INTAS; Contract grant number: 97-1001 (to M.S.).
© 2004 Wiley Periodicals, Inc.
every k. The graph G_{k} exhibits remarkable similarity to Kneser graphs. The proof that G_{k} is k-chromatic relies on Lovász's theorem about the chromatic number of graphs with highly connected neighborhood complexes.
© 2004 Wiley Periodicals, Inc. J Graph Theory 46: 1-14, 2004
Keywords: chromatic number; Kneser graphs; Mycielski's construction; neighborhood complex

1. INTRODUCTION

Our starting point is the following problem raised by N. J. A. Harvey and U. S. R. Murty [4].

For a given positive integer k, is there a k-chromatic graph G with a k-coloring $c=\left\{X_{1}, \ldots, X_{k}\right\}$ such that $N_{G}\left(X_{i}\right)$ is independent ${ }^{1}$ for each color-class $X_{i}, 1 \leq i \leq k$.

By a k-coloring of a graph G, we mean a partition $c=\left\{X_{1}, \ldots, X_{k}\right\}$ of the vertex set of G into k independent sets of G (empty sets are allowed). If x is a vertex of G with $x \in X_{i}$, then we also write $c(x)=i$ and say that x is colored with color i. The chromatic number $\chi(G)$ of G is the smallest number k such that G has a k-coloring. If $\chi(G)=k$, then we briefly say that G is k-chromatic. A graph G is called k-critical if G is k-chromatic but every proper subgraph of G has a $(k-1)$ coloring. The notation $N_{G}(X)$ is used for the set of vertices of G adjacent to some vertex of X where $X \subseteq V(G)$. Furthermore, $G[X]$ denotes the subgraph of G induced by X. A k-coloring $c=\left\{X_{1}, \ldots, X_{k}\right\}$ of a graph G is called a strong k coloring if $N_{G}\left(X_{i}\right)$ is independent for each color-class $X_{i}, 1 \leq i \leq k$. Clearly, every graph that has a strong k-coloring must be triangle-free.

We shall give a positive answer to the above question by constructing k chromatic graphs G_{k} and H_{k} (for every integer $k \geq 2$). The graphs G_{k} are defined non-recursively, they have some resemblance to Kneser graphs. Let $k \geq 2$ be an integer. We let $[k]$ denote the set $\{1, \ldots, k\}$. The graph G_{k} is defined as the graph whose vertices are the pairs (i, A) that satisfy $i \in[k], A \subseteq[k], i \notin A$ and $A \neq \emptyset$, and whose edges are those tuples $(i, A)(j, B)$ that satisfy $i \in B, j \in A$ and $A \cap B=\emptyset$. Then G_{k} has $k\left(2^{k-1}-1\right)$ vertices. The smallest of these graphs are $G_{2}=K_{2}$ and $G_{3}=C_{9}$. Figure 1 shows the graph G_{4}.

Let \mathbf{S}_{k} denote the class of all graphs that have a strong k-coloring. We prove that G_{k} is homomorphism universal in \mathbf{S}_{k}, that is, $G \in \mathbf{S}_{k}$ if and only if G has a homomorphism to G_{k} (Theorem 2.1). We also show that G_{k} is k-chromatic (Theorem 2.2) and even k-critical (Theorem 2.3) for all $k \geq 2$. These results give the somewhat surprising corollary that G_{k} is the unique smallest k-chromatic graph in \mathbf{S}_{k} (Corollary 2.1).
${ }^{1}$ The problem in its original form asks only if the chromatic number of $G\left[N_{G}\left(X_{i}\right)\right]$ can be made strictly less thank $k-1$. We will consider and solve only the strongest possible version of this question, i.e., whether this chromatic number can be one, which was suggested by B. Toft.

FIGURE 1. The graph G_{4}.

The graphs H_{k} will be defined recursively, in fact they are obtained by a generalised Mycielski construction. Let G be a graph and let $r \geq 1$ be an integer. We construct a new graph denoted by $M_{r}(G)=M_{r}\left(G, p_{1}, \ldots, p_{r}\right)$ as follows. For $1 \leq i \leq r$, let p_{i} denote a bijection from the vertex set $V(G)$ to a set X_{i}, where p_{1} is the identity map of $X_{1}=V(G)$ and the sets X_{1}, \ldots, X_{r} are pairwise disjoint. For $1 \leq i \leq r-1$, let

$$
E_{i}=\left\{p_{i}(x) p_{i+1}(y) \mid x y \in E(G)\right\}
$$

further, let

$$
E_{r}=\left\{p_{r}(x) z \mid x \in V(G)\right\}
$$

where z is an additional vertex. Then

$$
V\left(M_{r}(G)\right)=\bigcup_{i=1}^{r} X_{i} \cup\{z\} \quad \text { and } \quad E\left(M_{r}(G)\right)=E(G) \cup \bigcup_{i=1}^{r} E_{i}
$$

Clearly, if $H=M_{r}(G)$, then $H\left[X_{1}\right]=G$ and $H-E(G)$ as well as $H-X_{1}$ are bipartite. The graph $M_{1}(G)$ is the complete join of G and K_{1}. For the special case $r=2$, this construction was invented in 1955 by Mycielski [7] in order to generate a sequence of triangle-free k-chromatic graphs for $k \geq 2$. In 1968,

Schäuble [11], see also [6, problem 9.18], proved that $\chi\left(M_{2}(G)\right)=\chi(G)+1$ and, moreover, that $M_{2}(G)$ remains critical provided that G is critical.

In 1985, Tuza and Rödl [15] observed that the graph $M_{r}\left(K_{k}\right)$ is $(k+1)$-critical for all $r \geq 1$; thus they obtained infinitely many $(k+1)$-critical graphs $(k \geq 2)$ which can be made bipartite by the deletion of only $\binom{k}{2}$ edges. They also proved in [15] that this bound is best possible. Note that $M_{r}\left(K_{2}\right)=C_{2 r+1}$.

Clearly, $\chi\left(M_{r}(G)\right) \leq \chi(G)+1$ holds for all $r \geq 1$. Equality holds for $r=1,2$ but not in general. For every integer $k \geq 4$, let F_{k} denote the complete join of the complete graph on $k-4$ vertices with the square of the circuit C_{7}. Then it is proved in [14] that $\chi\left(F_{k}\right)=\chi\left(M_{3}\left(F_{k}\right)\right)=k$. However, if we repeatedly apply the generalised Mycielski construction to an odd circuit, then in each step the chromatic number increases by one. For $k \geq 3$, let \mathbf{M}_{k} denote the class of graphs defined recursively as follows:
(1) \mathbf{M}_{3} consists of all odd circuits, and, for $k \geq 3$,
(2) $\mathbf{M}_{k+1}=\left\{M_{r}(G) \mid G \in \mathbf{M}_{k}\right.$ and $\left.r \geq 1\right\}$.

The following result is due to Stiebitz [13], see also [10].
Theorem 1.1. Every graph $G \in \mathbf{M}_{k}$ with $k \geq 3$ is k-chromatic.
In [13], this theorem is used to generate for every $k \geq 4$ an infinite sequence of k-critical graphs without short odd circuits. Since the proof in [13] is not easily available, it is given in a subsequent section.

The graphs H_{k} are special members of \mathbf{M}_{k}, defined recursively as $H_{k+1}=$ $M_{4}\left(H_{k}\right)$ starting with $H_{2}=K_{2}$. Observe that $H_{3}=G_{3}=C_{9}$, however H_{4} and G_{4} are distinct (the former has 37, the latter has 28 vertices). On one hand, we use H_{k} to prove that G_{k} is k-chromatic by showing that H_{k} has a homomorphism to G_{k} (Theorem 2.2). On the other hand, H_{k} is a special case $(\ell=1)$ of the graphs H_{k}^{ℓ} for which we prove the following property (a generalisation of the Harvey and Murty property).
H_{k}^{ℓ} is a k-chromatic graph with a k-coloring $c=\left\{X_{1}, \ldots, X_{k}\right\}$ such that $N_{H_{k}^{\prime}}^{j}\left(X_{i}\right)$ is independent for each $i \in\{1, \ldots, k\}$, and for each $j \in\{1, \ldots, \ell\}$, where $N_{G}^{j}(X)$ is the set of vertices of G with distance j from X (Theorem 4.1).

Notice that the bound ℓ on j is essential in the generalisation. Without it, only bipartite graphs satisfy this property.

We conclude the Introduction with the following problem. We could prove that G_{k} is k-chromatic via a homomorphism from H_{k} which is proved to be k-chromatic by Lovász's theorem [5]. Is it possible to show that G_{k} is k-chromatic using a more direct proof? Like Bárány's proof for the Kneser graphs [1].

2. PROPERTIES OF \boldsymbol{G}_{K}

Theorem 2.1. Let $k \geq 2$ be an integer. A graph G has a strong k-coloring if and only if there exists a homomorphism of G into G_{k}.

Proof. For the "if" direction, assume that $\varphi: V(G) \rightarrow V\left(G_{k}\right)$ is a homomorphism of G into G_{k}. For $i \in[k]$, let $Y_{i}=\{(i, A) \mid \emptyset \neq A \subseteq[k] \backslash\{i\}\}$. Clearly, Y_{i} is an independent set in G_{k}. Furthermore, $N_{G_{k}}\left(Y_{i}\right)=\{(j, B) \mid i \in B \subseteq[k] \backslash\{j\}\}$ implying that $N_{G_{k}}\left(Y_{i}\right)$ is also an independent set in G_{k}. Consequently, $c^{\prime}=$ $\left\{Y_{1}, \ldots, Y_{k}\right\}$ is a strong k-coloring of G_{k}. Since φ is a homomorphism of G into G_{k}, this implies that the partition $c=\left\{X_{1}, \ldots, X_{k}\right\}$ with $X_{i}=\{v \in V(G) \mid$ $\left.\varphi(v) \in Y_{i}\right\}$ for $i \in[k]$ is a strong k-coloring of G.

For the "only if" direction, assume that $c=\left\{X_{1}, \ldots, X_{k}\right\}$ is a strong k-coloring of G. We will show that the mapping φ defined as follows is a homomorphism from G to G_{k}. For every $i \in[k]$ and every $x \in X_{i}$, let

$$
\varphi(x)= \begin{cases}\left(i,\left\{j \in[k] \mid x \text { has a neighbor in } X_{j}\right\}\right) & \text { if } d_{G}(x)>0, \text { and } \\ (i,[k] \backslash\{i\}) & \text { if } d_{G}(x)=0 .\end{cases}
$$

Since no $v \in X_{i}$ has a neighbor in X_{i}, φ is clearly a mapping from $V(G)$ to $V\left(G_{k}\right)$.

Let $u v$ be any edge of G, say with $u \in X_{i}$ and $v \in X_{j}$. Then $i \neq j$, and φ maps u and v to vertices (i, A) and (j, B) of G_{k} respectively, with $j \in A$ and $i \in B$. For every $\ell \in[k]$, the fact that c is a strong k-coloring of G implies that at most one of u and v has a neighbor in X_{ℓ}, so $A \cap B=\emptyset$ follows, by the definition of φ. Hence (i, A) and (j, B) are adjacent in G_{k}, which proves that φ is a homomorphism.

Theorem 2.1 implies that G_{k} has a strong k-coloring. Consequently, $\chi\left(G_{k}\right) \leq k$. In order to prove that G_{k} is a k-critical graph, we first prove the following result.

Proposition 2.1. There is a homomorphism from $M_{4}\left(G_{k-1}\right)$ to G_{k} for $k \geq 3$.
Proof. Let $H=M_{4}\left(G_{k-1}, p_{1}, p_{2}, p_{3}, p_{4}\right)$ and $X=V\left(G_{k-1}\right)$. For $j=1,2,3,4$, denote by $x^{j}=p_{j}(x)$ the j th copy of the vertex $x \in X$ and, let $X_{j}=\left\{x^{j} \mid x \in X\right\}$. Then

$$
V(H)=X_{1} \cup X_{2} \cup X_{3} \cup X_{4} \cup\{z\}
$$

and

$$
E(H)=E \cup E_{1} \cup E_{2} \cup E_{3} \cup E_{4},
$$

where

$$
E=\left\{x^{1} y^{1} \mid x y \in E\left(G_{k-1}\right)\right\}, E_{4}=\left\{x^{4} z \mid x \in X\right\}
$$

and, for $j=1,2,3$,

$$
E_{j}=\left\{x^{j} y^{j+1} \mid x y \in E\left(G_{k-1}\right)\right\} .
$$

For a vertex $x=(i, A) \in X=V\left(G_{k-1}\right)$, we have $i \in[k-1], A \subseteq[k-1], A \neq \emptyset$, and $i \notin A$. Then, let

$$
\varphi\left(x^{j}\right)= \begin{cases}(i, A) & \text { if } j=1, \\ (i, A \cup\{k\}) & \text { if } j=2, \\ (k, A) & \text { if } j=3, \\ (i,\{k\}) & \text { if } j=4\end{cases}
$$

Moreover, let

$$
\varphi(z)=(k,\{1, \ldots, k-1\}) .
$$

Then, clearly, φ is a mapping from $V(H)$ to $V\left(G_{k}\right)$ and it is straightforward to check that if $u v$ is an edge of H, then $\varphi(u) \varphi(v)$ is an edge of G_{k}. Thus, φ is a homomorphism from $H=M_{4}\left(G_{k-1}\right)$ to G_{k}.

Theorem 2.2. The graph G_{k} is k-chromatic for every $k \geq 2$.
Proof. We prove by induction on k that there is a homomorphism from H_{k} to G_{k}. For $k=2$ (in fact for $k=3$ too), H_{k} and G_{k} are isomorphic. Assuming that there is a homomorphism from H_{k-1} to G_{k-1}, one can obviously extend it to a homomorphism of $M_{4}\left(H_{k-1}\right)=H_{k}$ to $M_{4}\left(G_{k-1}\right)$. But Proposition 2.1 ensures that this can be continued to G_{k}, which results in the required homomorphism. Since $H_{k} \in \mathbf{M}_{k}$, we then infer from Theorem 1.1 that $\chi\left(G_{k}\right) \geq \chi\left(H_{k}\right)=k$. Thus, by Theorem 2.1, $\chi\left(G_{k}\right)=k$.

Theorem 2.3. The graph G_{k} is k-critical for every $k \geq 2$.
Proof. By Theorem 2.2, we only have to show that every proper subgraph of G_{k} is colorable with fewer than k colors. To do this, it is sufficient to show that $G_{k}-e$ has a $(k-1)$-coloring for all edges e of G_{k}. We prove this by induction on $k \geq 2$. The bottom case is trivial, with $G_{2}=K_{2}$.

Now, assume that $k \geq 3$. Let $x y$ be an arbitrary edge of G_{k}. Then $x=\left(i^{\prime}, A^{\prime}\right)$ and $y=\left(j^{\prime}, B^{\prime}\right)$ where $i^{\prime}, j^{\prime} \in[k], A^{\prime}, B^{\prime} \subseteq[k], A^{\prime} \neq \emptyset, B^{\prime} \neq \emptyset, i^{\prime} \notin A^{\prime}$ and $j^{\prime} \notin B^{\prime}$. Since $x y$ is an edge of G_{k}, we have $i^{\prime} \in B^{\prime}, j^{\prime} \in A^{\prime}$ and $A^{\prime} \cap B^{\prime}=\emptyset$. By symmetry and since $k \geq 3$, we may assume that $k \neq i^{\prime}, j^{\prime}$ and $k \notin A^{\prime}$. Then we partition the vertex set of G_{k} into four classes, namely

$$
\begin{aligned}
& X_{1}=\{(i, A) \mid i \in[k-1], A \subseteq[k-1], A \neq \emptyset, i \notin A\}, \\
& X_{2}=\left\{(i, A \cup\{k\}) \mid(i, A) \in X_{1}\right\}, \\
& X_{3}=\{(k, A) \mid A \subseteq[k-1]\}, \\
& X_{4}=\{(i,\{k\}) \mid i \in[k-1]\},
\end{aligned}
$$

and the additional vertex $z=(k,[k-1])$. Clearly, $x \in X_{1}$ and $y \in X_{1} \cup X_{2}$. Furthermore, $G_{k}\left[X_{1}\right]=G_{k-1}$ and if e is an edge of G_{k}, then e joins two vertices of X_{1},
or a vertex of X_{i} with a vertex of X_{i+1} for some $i \in\{1,2,3\}$, or a vertex of X_{4} with the vertex z. In particular, X_{2}, X_{3} and X_{4} are independent sets in G_{k}.

If $y \in X_{1}$, then $x y$ is an edge of $G_{k-1}=G_{k}\left[X_{1}\right]$, and, by induction, there exists a $(k-2)$-coloring of $G_{k-1}-x y$. This coloring may be extended to a $(k-1)$-coloring of $G_{k}-x y$ by coloring all vertices of $X_{2} \cup X_{4}$ with the new color $k-1$, and coloring all vertices of $X_{3} \cup\{z\}$ with an old color, say color 1.

If $y=\left(j^{\prime}, B^{\prime}\right) \in X_{2}$, then $u=\left(j^{\prime}, B^{\prime}-\{k\}\right)$ is a vertex of X_{1} that is also adjacent to x, and, by induction, there exists a $(k-2)$-coloring of $G_{k-1}-x u$. This coloring may be extended to a $(k-1)$-coloring of $G_{k}-x y$ as follows. First, we give each vertex $(i, A \cup\{k\}) \in X_{2}$ the color of its corresponding vertex $(i, A) \in X_{1}$. Then we recolor u by the new color $k-1$ and use this color to color all vertices of $X_{3} \cup\{z\}$. Finally, we color all vertices of X_{4} with an old color.

Therefore, in both cases, we obtain a $(k-1)$-coloring of $G_{k}-x y$ and the proof is finished.

This section is concluded by stating an immediate corollary of Theorems 2.1 and 2.3.

Corollary 2.1. Assume that G is a graph with the minimum number of vertices among the k-chromatic graphs having a strong k-coloring. Then G is isomorphic to G_{k}.

3. PROOF OF THEOREM 1.1

The proof of Theorem 1.1 is based on a result of Lovász. We need some concepts from algebraic topology, see [2] or [12] for the details.

An (abstract) simplicial complex $\mathcal{K}=(V, \Delta)$ is a set $V=V(\mathcal{K})$ (the vertex set of \mathcal{K}) together with a set $\Delta=\Delta(\mathcal{K})$ of non-empty finite subsets of V (called simplices or faces of \mathcal{K}) such that $\emptyset \neq \sigma \subseteq \tau \in \Delta$ implies $\sigma \in \Delta$. Usually, $V=\bigcup_{\sigma \in \Delta} \sigma$. If $V(\mathcal{K})$ is a finite set, then we briefly say that \mathcal{K} is finite.

Let $S^{d}=\left\{x \in \mathbb{R}^{d+1} \mid\|x\|=1\right\}$ and $B^{d}=\left\{x \in \mathbb{R}^{d} \mid\|x\| \leq 1\right\}$ denote the d dimensional sphere and d-dimensional ball, respectively. A topological space \mathcal{T} is m-connected for $m \geq 0$ if every continuous map $f: S^{d} \longrightarrow \mathcal{T}$ for $0 \leq d \leq m$ has a continuous extension over B^{d+1}.

For any graph G, let $\mathcal{N}(G)$ be the simplicial complex, called the neighborhood complex of G, whose vertex set is $V(G)$ and whose simplices are those sets of vertices which have a common neighbor in G, i.e., $\sigma \in \Delta(\mathcal{N}(G))$ iff $\emptyset \neq \sigma \subseteq N_{G}(x)$ for some $x \in V(G)$. In 1978, Lovász [5] proved the following remarkable result.

Theorem 3.1. For any graph G, if $\mathcal{N}(G)$ is a ($k-3$)-connected topological space where $k \geq 3$, then $\chi(G) \geq k$.

Let \mathcal{K} be a finite simplicial complex. The cone over \mathcal{K}, denoted by $C(\mathcal{K})$, is the complex with $V(C(\mathcal{K}))=V(\mathcal{K}) \cup\{a\}$ and $\Delta(C(\mathcal{K}))=\Delta(\mathcal{K}) \cup\{\sigma \cup\{a\} \mid$ $\sigma \in \Delta(\mathcal{K}) \cup\{\emptyset\}$ for an $a \notin V(\mathcal{K})$. The suspension of \mathcal{K}, denoted by $S(\mathcal{K})$, is the complex with $V(S(\mathcal{K}))=V(\mathcal{K}) \cup\{a, b\}$ and $\Delta(S(\mathcal{K}))=\Delta(\mathcal{K}) \cup\{\sigma \cup\{x\} \mid \sigma \in$ $\Delta(\mathcal{K}) \cup\{\emptyset\}$ and $x \in\{a, b\}\}$, with $a, b \notin V(\mathcal{K})$ and $a \neq b$.

Furthermore, for $r \geq 1$, we construct a new complex denoted by $M_{r}(\mathcal{K})=$ $M_{r}\left(\mathcal{K}, q_{1}, \ldots, q_{r}\right)$ as follows. For $1 \leq i \leq r$, let q_{i} denote a bijection from the set $V(\mathcal{K})$ to a set Y_{i}, where the sets Y_{1}, \ldots, Y_{r} are pairwise disjoint. For $1 \leq i \leq r-1$, let

$$
\Delta_{i}=\left\{\sigma \mid \emptyset \neq \sigma \subseteq q_{i}(\tau) \cup q_{i+1}(\tau) \& \tau \in \Delta(\mathcal{K})\right\}
$$

further, let

$$
\Delta_{0}=\left\{\sigma \mid \emptyset \neq \sigma \subseteq Y_{1}\right\}
$$

and,

$$
\Delta_{r}=\left\{\sigma \mid \emptyset \neq \sigma \subseteq q_{r}(\tau) \cup\{z\} \& \tau \in \Delta(\mathcal{K})\right\}
$$

where z is a new vertex. Then

$$
V\left(M_{r}(\mathcal{K})\right)=\bigcup_{i=1}^{r} Y_{i} \cup\{z\} \quad \text { and } \quad \Delta\left(M_{r}(\mathcal{K})\right)=\bigcup_{i=0}^{r} \Delta_{i}
$$

Note that, for $1 \leq i \leq r$, the complex $\mathcal{K}_{i}=\left(Y_{i},\left\{q_{i}(\tau) \mid \tau \in \Delta(\mathcal{K})\right\}\right)$ is an isomorphic copy of \mathcal{K}. Clearly, $\left(Y_{r} \cup\{z\}, \Delta_{r}\right)=C\left(\mathcal{K}_{r}\right)$ and $\left(Y_{1}, \Delta_{0}\right)$ is a full simplex and, therefore, a contractible space. Furthermore, for $1 \leq i \leq r-1$, the complex $\left(Y_{i} \cup Y_{i+1}, \Delta_{i}\right)$ is homotopy equivalent to $\mathcal{K} \times I$ where I is the unit interval. Then the complex $\left(\bigcup_{i=1}^{r} Y_{i}, \bigcup_{i=1}^{r-1} \Delta_{i}\right)$ is homotopy equivalent to $\mathcal{K} \times$ $[0, r-1]$. Therefore, the complex $M_{1}(\mathcal{K})$ is homotopy equivalent to a space obtained from the cone over \mathcal{K} by identifying the base of the cone and, for $r \geq 2$ the complex $M_{r}(\mathcal{K})$ is homotopy equivalent to a space that is the quotient with respect to \mathcal{K} of a full simplex $\left(Y_{1}, \Delta_{0}\right)$, a homotopy $\mathcal{K} \times[0, r-1]$ and a cone $C(\mathcal{K})$. Consequently, we have the following result.

Lemma 3.1. For every finite simplicial complex \mathcal{K} and every $r \geq 1$, the complex $M_{r}(\mathcal{K})$ is homotopy equivalent to the suspension $S(\mathcal{K})$.

Lemma 3.2. For every graph G and every $r \geq 1, \mathcal{N}\left(M_{r}(G)\right)=M_{r}(\mathcal{N}(G))$.
Proof. Let $H=M_{r}\left(G, p_{1}, \ldots, p_{r}\right)$ and $\mathcal{K}=\mathcal{N}(G)$. If $r=2 s$, then it is not difficult to check that $\mathcal{N}(H)=M_{r}\left(\mathcal{K}, q_{1}, \ldots, q_{r}\right)$ with $q_{i}=p_{r-2 i+2}$ and $q_{s+i}=p_{2 i-1}$ for $1 \leq i \leq s$. Similarly, if $r=2 s+1$, then $\mathcal{N}(H)=M_{r}\left(\mathcal{K}, q_{1}, \ldots, q_{r}\right)$ with $q_{i}=$ $p_{r-2 i+2}$ for $1 \leq i \leq s+1$ and $q_{s+i+1}=p_{2 i}$ for $1 \leq i \leq s$.

Proof of Theorem 1.1. First, we claim that for every integer $k \geq 3$ and every graph $G \in \mathbf{M}_{k}$, the topological space $\mathcal{N}(G)$ is homotopy equivalent to the $(k-2)$-dimensional sphere S^{k-2} which is a $(k-3)$-connected space.

We prove this claim by induction on k. For $k=3$ the claim is evident, since every graph in \mathbf{M}_{3} is an odd circuit. Now, assume that $H \in \mathbf{M}_{k+1}$ where $k \geq 3$. Then $H=M_{r}(G)$ for some graph $G \in \mathbf{M}_{k}$ and some integer $r \geq 1$. From the induction hypothesis, it follows that $\mathcal{N}(G)$ is homotopy equivalent to the sphere S^{k-2}. By Lemmas 3.1 and 3.2, $\mathcal{N}(H)$ is homotopy equivalent to the suspension of $\mathcal{N}(G)$ and, therefore, to the sphere $S^{k-1}=S\left(S^{k-2}\right)$. This proves the claim.

Now, we conclude from Theorem 3.1 that $\chi(G) \geq k$ for every graph $G \in \mathbf{M}_{k}$. On the other hand, $\chi(G) \leq k$ for every graph $G \in \mathbf{M}_{k}$. Thus Theorem 1.1 is proved.

In [8] as well as in [14], a purely combinatorial proof for Theorem 1.1 in case of $k=4$ is given. However, such a proof is not known for $k \geq 5$.

Lemma 3.3. Let G be a k-critical graph $(k \geq 2)$ and let $H=M_{r}(G)$ for some integer $r \geq 1$. Then H is $(k+1)$-critical provided that $\chi(H)=k+1$.

Proof. Assume that $H=M_{r}\left(G, p_{1}, \ldots, p_{r}\right)$ and $X_{i}=p_{i}(V(G))$ for $i=1, \ldots$, r. Note that $V(H)=X_{1} \cup \cdots \cup X_{r} \cup\{z\}, X_{1}=V(G)$ and $G=H\left[X_{1}\right]$. For the proof of Lemma 3.3 it is sufficient to show that $H-e$ has a k-coloring for all edges e of H. We distinguish three cases.

Case 1. $e \in E(G)$. Then there is a $(k-1)$-coloring of $G-e$ and, since $H-X_{1}$ is bipartite, this coloring can be extended to some k-coloring of $H-e$.

Case 2. $e=p_{i}(a) p_{i+1}(b)$ with $1 \leq i \leq r-1$. Then $e^{\prime}=a b \in E(G)$ and, therefore, there is a $(k-1)$-coloring f of $G-e^{\prime}$. Since G is not $(k-1)$-colorable, $f(a)=f(b)$. Now, we define a map g as follows. For $1 \leq j \leq i$ and $x \in V(G)$, let

$$
g\left(p_{j}(x)\right)= \begin{cases}f(x) & \text { if } x \neq b \\ k & \text { if } x=b\end{cases}
$$

Furthermore, let $g\left(p_{i+1}(x)\right)=f(x)$ for all $x \in V(G)$. Then it is easy to check that g is a k-coloring of the subgraph $H\left[X_{1} \cup \cdots \cup X_{i+1}\right]-e$. Clearly, g can be extended to some k-coloring of $H-e$.

Case 3. $e=p_{r}(a) z$. Since G is k-critical, there is a k-coloring f of $G=H\left[X_{1}\right]$ such that $f(x)=k$ only for $x=a$. Now, color each vertex $p_{i}(x)$ with $f(x)$ and color the vertex z with the new color k. This results in a k-coloring of $H-e$.

As a consequence of Lemma 3.3 and Theorem 1.1, we obtain the following result.

Theorem 3.2. Every graph $G \in \mathbf{M}_{k}$ with $k \geq 3$ is k-critical.

4. GRAPHS $\boldsymbol{H}_{K}^{\ell}$

For fixed integer $\ell \geq 1$, we recursively define a sequence of graphs H_{k}^{ℓ} for $k=2,3, \ldots$ as follows. For $k=2$, we let $H_{2}^{\ell}=K_{2}$ (independently of ℓ). For $k \geq 3$, we define $H_{k}^{\ell}=M_{3 \ell+1}\left(H_{k-1}^{\ell}\right)$.

For $X \subseteq V(G)$ and an integer $j \geq 0$, we will let $N_{G}^{j}(X)$ denote the j th distance class from X in G, i.e., the set of those $v \in V(G)$ such that G contains some path of length j from v to a vertex in X, but no shorter path of this type. Note that $N_{G}^{0}(X)=X$.

Let k, ℓ be integers with $k \geq 2$ and $\ell \geq 1$. Let \mathbf{S}_{k}^{ℓ} denote the class of all graphs G that have a k-coloring $c=\left\{X_{1}, \ldots, X_{k}\right\}$ such that $N_{G}^{j}\left(X_{i}\right)$ is independent in G for each $i \in\{1, \ldots, k\}$ and $j \in\{1, \ldots, \ell\}$.
Theorem 4.1. For every $k \geq 2$ and $\ell \geq 1$, the graph H_{k}^{ℓ} is k-chromatic and belongs to \mathbf{S}_{k}^{ℓ}.

Proof. It follows directly from the construction and using Theorem 1.1 that H_{k}^{ℓ} is k-chromatic. Note that $H_{2}^{\ell}=K_{2}$ and $H_{3}^{\ell}=C_{6 \ell+3}$.

It remains to prove the existence of a k-coloring $c=\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}$ of H_{k}^{ℓ} with the required property. For this, we use induction on $k \geq 2$. Since $H_{2}^{\ell}=K_{2}$, the statement is trivial when $k=2$.

Now, assume that $k \geq 3$. Then $H_{k}^{\ell}=M_{3 \ell+1}\left(H_{k-1}^{\ell}\right)$ and, by induction, there exists a $(k-1)$-coloring $c=\left\{X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{k-1}^{\prime}\right\}$ of H_{k-1}^{ℓ} such that $N_{H_{k-1}^{\ell}}^{j}\left(X_{i}^{\prime}\right)$ is independent in H_{k-1}^{ℓ} for all i, j with $1 \leq i \leq k-1$ and $1 \leq j \leq \ell$.

From the construction of $M_{3 \ell+1}\left(H_{k-1}^{\ell}\right)$, there is, in particular, a partition $V^{0} \cup$ $V^{1} \cup \ldots V^{3 \ell-1} \cup V^{3 \ell} \cup\{z\}$ of $V\left(H_{k}^{\ell}\right)$ with $V^{0}=V\left(H_{k-1}^{\ell}\right)$, and where $V^{t}=\left\{v^{t}=\right.$ $\left.p_{t}(v) \mid v \in V\left(H_{k-1}^{\ell}\right)\right\}$ are independent sets, $t=1,2, \ldots, 3 \ell$ (and p_{t} is the bijection of V^{0} to V^{t}). We define for $i=1,2, \ldots, k-1$,

$$
X_{i}=\left\{v^{t} \mid v \in X_{i}^{\prime}, t=0,1, \ldots, \ell-1, \ell, \ell+2, \ell+4, \ldots, 3 \ell-2,3 \ell\right\}
$$

That each of these sets is independent in H_{k}^{ℓ} follows from the construction of $M_{r}(G)$, where we use that each X_{i}^{\prime} is independent in H_{k-1}^{ℓ}. The final class X_{k} is given by

$$
X_{k}=V^{\ell+1} \cup V^{\ell+3} \cup \cdots \cup V^{3 \ell-3} \cup V^{3 \ell-1} \cup\{z\} .
$$

This is again an independent set in H_{k}^{ℓ}, since it is, by the construction of $M_{r}(G)$, a union of independent sets no two of which are joined by an edge. Thus $c=\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}$ indeed defines a k-coloring of H_{k}^{ℓ}.

For $j=1, \ldots, \ell$, we need to show that the j th distance class from each X_{i} is an independent set in $H_{k}^{\ell}, i=1,2, \ldots, k$. Suppose that this fails for some $i \leq k-1$. Then there are vertices $u^{s}, v^{t} \in X_{i}$ and a walk W of odd length at most $2 \ell+1$ from u^{s} to v^{t} in H_{k}^{ℓ}. Then W does not use the vertex z, since every walk in H_{k}^{ℓ} using z and having length at most $2 \ell+1$ must use vertices from X_{k} alternately,
but W has odd length and no end in X_{k}. So by projecting W down to H_{k-1}^{ℓ}, there exists a walk W^{\prime} of odd length at most $2 \ell+1$ in H_{k-1}^{ℓ} between vertices $u, v \in X_{i}^{\prime}$, which is a contradiction to the induction hypothesis (possibly for a different color class than X_{i}^{\prime} in H_{k-1}^{ℓ} in the case when W^{\prime} contains an odd circuit).

Finally, consider a walk in H_{k}^{ℓ} which starts and ends in X_{k}. If it uses any vertex from V^{0}, then its length is at least $2 \ell+2$, since the distance from V^{0} to X_{k} is $\ell+1$ in H_{k}^{ℓ}. Since $H_{k}^{\ell}-V_{0}$ is bipartite, this implies that the length of the walk is at least $2 \ell+3$ if it is odd. Hence the j th distance classes from X_{k} are independent, $j=1, \ldots, \ell$.

As pointed out by one of the referees, there is also a homomorphism universal graph G_{k}^{ℓ} in \mathbf{S}_{k}^{ℓ}. The vertices of G_{k}^{ℓ} are the couples of the form (i, A) where $i \in[k]$ and A is a subset of $[k]^{\ell}$ consisting of strings $\left(x_{1}, \ldots, x_{\ell}\right)$ where $x_{1} \neq i$ and $x_{j} \neq$ x_{j-1} for $j=2, \ldots, \ell$. The edges of G_{k}^{ℓ} are the pairs $(i, A),(j, B)$ such that for every

FIGURE 2. An embedding of H_{4} quadrangulating the real projective plane.
$\left(x_{1}, \ldots, x_{\ell}\right) \in A,\left(y_{1}, \ldots, y_{\ell}\right) \in B$ we have $\left(j, y_{1}, \ldots, y_{\ell-1}\right) \in A,\left(i, x_{1}, \ldots, x_{\ell-1}\right) \in$ B and $x_{t} \neq y_{t}$ for $t=1, \ldots, \ell$.

5. CONCLUDING REMARKS

We will indicate a separate argument for proving that H_{4} and G_{4} are 4-chromatic graphs. It is straightforward to show that H_{4} may be drawn as a quadrangulation of the real projective plane, an embedding such that every face is bounded by a 4-circuit, see Figure 2. We observe that the subgraph $H_{3}=G_{3}$ of H_{4} corresponds precisely to the horizontally drawn edges of Figure 2. Each vertex of H_{4} is marked in this figure with the name of the vertex of G_{4} to which it is mapped by the homomorphism φ from H_{4} to G_{4}, the existence of which is proved in Theorem 2.2. Since φ is a composition of homomorphisms, each of which maps two opposite corners of a face to a single vertex and fixes all the remaining

FIGURE 3. An embedding of G_{4} quadrangulating the real projective plane.
vertices, it follows that also G_{4} may be drawn as a quadrangulation of the real projective plane. Figure 3 shows such a drawing of G_{4} in a more symmetric way than obtained directly from Figure 2 by applying φ. Arguments due to Gallai [3], later developed in a more explicit form by Youngs [16], show that any graph which quadrangulates the projective plane is either bipartite or 4-chromatic. Hence G_{4} is 4 -chromatic, since G_{4} contains an odd circuit, namely $G_{3}=C_{9}$. By the same reason also, H_{4} is 4 -chromatic. This argument can be also used to show that all graphs of the form $M_{r}\left(C_{2 s+1}\right)(r, s \geq 2)$ are 4-chromatic.

For every $r \geq 1$, the graph $L_{r}=M_{r}\left(C_{2 r+1}\right)$ is a 4-critical graph with $n=$ $r(2 r+1)+1$ vertices such that every odd circuit of L_{r} has length $\geq 2 r+1 \geq$ $\sqrt{2 n}$. This fact was first proved by Stiebitz [13] (see also [10]) and later rediscovered, independently, by Ngoc and Tuza [8] and by Youngs [16]. That all graphs of the family $M_{r}\left(C_{2 s+1}\right)$ are 4 -chromatic was also proved by Payan [9] and, recently, by Tardif [14].

REFERENCES

[1] I. Bárány, A short proof of Kneser's conjecture, J Combin Theory Ser A 25 (1978), 325-326.
[2] A. Björner, Topological methods, Handbook of Combinatorics, R. L. Graham, et al. (Editors), Elsevier Science B.V., Amsterdam, 1995, pp. 1819-1872.
[3] T. Gallai, Kritische Graphen I, Publ Math Inst Hungar Acad Sci 8 (1963), 165-192.
[4] U. S. R. Murty, personal communication, 1997.
[5] L. Lovász, Kneser's conjecture, chromatic number, and homotopy, J Combin Theory Ser A 25 (1978), 319-324.
[6] L. Lovász, Combinatorial Problems and Exercises, Akad Kiadó, Budapest, 1979.
[7] J. Mycielski, Sur le coloriage des graphes, Colloq Math 3 (1955), 161162.
[8] N. V. Ngoc and Zs. Tuza, 4-chromatic graphs with large odd girth, Discrete Math 138 (1995), 387-392.
[9] C. Payan, On the chromatic number of cube-like graphs, Discrete Math 103 (1992), 271-277.
[10] H. Sachs and M. Stiebitz, On constructive methods in the theory of colorcritical graphs, Discrete Math 74 (1989), 201-226.
[11] M. Schäuble, Bemerkungen zur Konstruktion dreikreisfreier k-chromatischer Graphen, Wiss Zeitschrift TH Ilmenau 15 (1969), Heft 2, 59-63.
[12] E. H. Spanier, Algebraic Topology, Springer, New York, 1989.
[13] M. Stiebitz, Beiträge zur Theorie der färbungskritischen Graphen, Habilitation, TH Ilmenau, 1985.
[14] C. Tardif, The fractional chromatic numbers of cones over graphs, J Graph Theory 38 (2001), 87-94.
[15] Zs. Tuza and V. Rödl, On color-critical graphs, J Combin Theory Ser B 38 (1985), 204-213.
[16] D. A. Youngs, 4-chromatic projective graphs, J Graph Theory 21 (1996), 219-227.

