On Graphs With Strongly Independent Color-Classes

A. Gyárfás,¹ T. Jensen,² and M. Stiebitz³

¹COMPUTER AND AUTOMATION INSTITUTE HUNGARIAN ACADEMY OF SCIENCES KENDE U. 13-17 H-1111 BUDAPEST, HUNGARY E-mail: gyarfas@luna.ikk.sztaki.hu

> ²INSTITUTE OF MATHEMATICS UNIVERSITY OF HAMBURG BUNDESSTRAßE 55 D-20146 HAMBURG, GERMANY E-mail: tommy@cs.rhul.ac.uk

³INSTITUTE OF MATHEMATICS ILMENAU TECHNICAL UNIVERSITY PF 10 565 D-98684 ILMENAU, GERMANY E-mail: Michael.Stiebitz@mathematik.tu-ilmenau.de

Received September 5, 2001; Revised September 1, 2003

DOI 10.1002/jgt.10165

Abstract: We prove that for every *k* there is a *k*-chromatic graph with a *k*-coloring where the neighbors of each color-class form an independent set. This answers a question raised by N. J. A. Harvey and U. S. R. Murty [4]. In fact we find the smallest graph G_k with the required property for

Contract grant sponsor: INTAS; Contract grant number: 97-1001 (to M.S.). © 2004 Wiley Periodicals, Inc.

every *k*. The graph G_k exhibits remarkable similarity to Kneser graphs. The proof that G_k is *k*-chromatic relies on Lovász's theorem about the chromatic number of graphs with highly connected neighborhood complexes. © 2004 Wiley Periodicals, Inc. J Graph Theory 46: 1–14, 2004

Keywords: chromatic number; Kneser graphs; Mycielski's construction; neighborhood complex

1. INTRODUCTION

Our starting point is the following problem raised by N. J. A. Harvey and U. S. R. Murty [4].

For a given positive integer k, is there a k-chromatic graph G with a k-coloring $c = \{X_1, \ldots, X_k\}$ such that $N_G(X_i)$ is independent¹ for each color-class $X_i, 1 \le i \le k$.

By a *k*-coloring of a graph *G*, we mean a partition $c = \{X_1, \ldots, X_k\}$ of the vertex set of *G* into *k* independent sets of *G* (empty sets are allowed). If *x* is a vertex of *G* with $x \in X_i$, then we also write c(x) = i and say that *x* is colored with color *i*. The chromatic number $\chi(G)$ of *G* is the smallest number *k* such that *G* has a *k*-coloring. If $\chi(G) = k$, then we briefly say that *G* is *k*-chromatic. A graph *G* is called *k*-critical if *G* is *k*-chromatic but every proper subgraph of *G* has a (k - 1)-coloring. The notation $N_G(X)$ is used for the set of vertices of *G* adjacent to some vertex of *X* where $X \subseteq V(G)$. Furthermore, G[X] denotes the subgraph of *G* induced by *X*. A *k*-coloring $c = \{X_1, \ldots, X_k\}$ of a graph *G* is called a *strong k*-coloring if $N_G(X_i)$ is independent for each color-class $X_i, 1 \le i \le k$. Clearly, every graph that has a strong *k*-coloring must be triangle-free.

We shall give a positive answer to the above question by constructing *k*chromatic graphs G_k and H_k (for every integer $k \ge 2$). The graphs G_k are defined non-recursively, they have some resemblance to Kneser graphs. Let $k \ge 2$ be an integer. We let [k] denote the set $\{1, \ldots, k\}$. The graph G_k is defined as the graph whose vertices are the pairs (i, A) that satisfy $i \in [k]$, $A \subseteq [k]$, $i \notin A$ and $A \neq \emptyset$, and whose edges are those tuples (i, A)(j, B) that satisfy $i \in B$, $j \in A$ and $A \cap B = \emptyset$. Then G_k has $k(2^{k-1} - 1)$ vertices. The smallest of these graphs are $G_2 = K_2$ and $G_3 = C_9$. Figure 1 shows the graph G_4 .

Let \mathbf{S}_k denote the class of all graphs that have a strong k-coloring. We prove that G_k is homomorphism universal in \mathbf{S}_k , that is, $G \in \mathbf{S}_k$ if and only if G has a homomorphism to G_k (Theorem 2.1). We also show that G_k is k-chromatic (Theorem 2.2) and even k-critical (Theorem 2.3) for all $k \ge 2$. These results give the somewhat surprising corollary that G_k is the unique smallest k-chromatic graph in \mathbf{S}_k (Corollary 2.1).

¹The problem in its original form asks only if the chromatic number of $G[N_G(X_i)]$ can be made strictly less thank k - 1. We will consider and solve only the strongest possible version of this question, i.e., whether this chromatic number can be one, which was suggested by B. Toft.

FIGURE 1. The graph G_4 .

The graphs H_k will be defined recursively, in fact they are obtained by a generalised Mycielski construction. Let *G* be a graph and let $r \ge 1$ be an integer. We construct a new graph denoted by $M_r(G) = M_r(G, p_1, \ldots, p_r)$ as follows. For $1 \le i \le r$, let p_i denote a bijection from the vertex set V(G) to a set X_i , where p_1 is the identity map of $X_1 = V(G)$ and the sets X_1, \ldots, X_r are pairwise disjoint. For $1 \le i \le r - 1$, let

$$E_i = \{ p_i(x) p_{i+1}(y) \, | \, xy \in E(G) \},\$$

further, let

$$E_r = \{ p_r(x)z \,|\, x \in V(G) \},\$$

where z is an additional vertex. Then

$$V(M_r(G)) = \bigcup_{i=1}^r X_i \cup \{z\}$$
 and $E(M_r(G)) = E(G) \cup \bigcup_{i=1}^r E_i.$

Clearly, if $H = M_r(G)$, then $H[X_1] = G$ and H - E(G) as well as $H - X_1$ are bipartite. The graph $M_1(G)$ is the complete join of G and K_1 . For the special case r = 2, this construction was invented in 1955 by Mycielski [7] in order to generate a sequence of triangle-free *k*-chromatic graphs for $k \ge 2$. In 1968,

Schäuble [11], see also [6, problem 9.18], proved that $\chi(M_2(G)) = \chi(G) + 1$ and, moreover, that $M_2(G)$ remains critical provided that G is critical.

In 1985, Tuza and Rödl [15] observed that the graph $M_r(K_k)$ is (k + 1)-critical for all $r \ge 1$; thus they obtained infinitely many (k + 1)-critical graphs $(k \ge 2)$ which can be made bipartite by the deletion of only $\binom{k}{2}$ edges. They also proved in [15] that this bound is best possible. Note that $M_r(K_2) = C_{2r+1}$.

Clearly, $\chi(M_r(G)) \leq \chi(G) + 1$ holds for all $r \geq 1$. Equality holds for r = 1, 2 but not in general. For every integer $k \geq 4$, let F_k denote the complete join of the complete graph on k - 4 vertices with the square of the circuit C_7 . Then it is proved in [14] that $\chi(F_k) = \chi(M_3(F_k)) = k$. However, if we repeatedly apply the generalised Mycielski construction to an odd circuit, then in each step the chromatic number increases by one. For $k \geq 3$, let \mathbf{M}_k denote the class of graphs defined recursively as follows:

- (1) \mathbf{M}_3 consists of all odd circuits, and, for $k \geq 3$,
- (2) $\mathbf{M}_{k+1} = \{ M_r(G) \mid G \in \mathbf{M}_k \text{ and } r \ge 1 \}.$

The following result is due to Stiebitz [13], see also [10].

Theorem 1.1. Every graph $G \in \mathbf{M}_k$ with $k \ge 3$ is k-chromatic.

In [13], this theorem is used to generate for every $k \ge 4$ an infinite sequence of *k*-critical graphs without short odd circuits. Since the proof in [13] is not easily available, it is given in a subsequent section.

The graphs H_k are special members of \mathbf{M}_k , defined recursively as $H_{k+1} = M_4(H_k)$ starting with $H_2 = K_2$. Observe that $H_3 = G_3 = C_9$, however H_4 and G_4 are distinct (the former has 37, the latter has 28 vertices). On one hand, we use H_k to prove that G_k is k-chromatic by showing that H_k has a homomorphism to G_k (Theorem 2.2). On the other hand, H_k is a special case ($\ell = 1$) of the graphs H_k^{ℓ} for which we prove the following property (a generalisation of the Harvey and Murty property).

 H_k^{ℓ} is a k-chromatic graph with a k-coloring $c = \{X_1, \ldots, X_k\}$ such that $N_{H_k^{j}}^{j}(X_i)$ is independent for each $i \in \{1, \ldots, k\}$, and for each $j \in \{1, \ldots, \ell\}$, where $N_G^{j}(X)$ is the set of vertices of G with distance j from X (Theorem 4.1).

Notice that the bound ℓ on *j* is essential in the generalisation. Without it, only bipartite graphs satisfy this property.

We conclude the Introduction with the following problem. We could prove that G_k is k-chromatic via a homomorphism from H_k which is proved to be k-chromatic by Lovász's theorem [5]. Is it possible to show that G_k is k-chromatic using a more direct proof? Like Bárány's proof for the Kneser graphs [1].

2. PROPERTIES OF G_K

Theorem 2.1. Let $k \ge 2$ be an integer. A graph G has a strong k-coloring if and only if there exists a homomorphism of G into G_k .

Proof. For the "if" direction, assume that $\varphi:V(G) \to V(G_k)$ is a homomorphism of G into G_k . For $i \in [k]$, let $Y_i = \{(i,A) \mid \emptyset \neq A \subseteq [k] \setminus \{i\}\}$. Clearly, Y_i is an independent set in G_k . Furthermore, $N_{G_k}(Y_i) = \{(j,B) \mid i \in B \subseteq [k] \setminus \{j\}\}$ implying that $N_{G_k}(Y_i)$ is also an independent set in G_k . Consequently, $c' = \{Y_1, \ldots, Y_k\}$ is a strong k-coloring of G_k . Since φ is a homomorphism of G into G_k , this implies that the partition $c = \{X_1, \ldots, X_k\}$ with $X_i = \{v \in V(G) \mid \varphi(v) \in Y_i\}$ for $i \in [k]$ is a strong k-coloring of G.

For the "only if" direction, assume that $c = \{X_1, \ldots, X_k\}$ is a strong *k*-coloring of *G*. We will show that the mapping φ defined as follows is a homomorphism from *G* to G_k . For every $i \in [k]$ and every $x \in X_i$, let

$$\varphi(x) = \begin{cases} (i, \{j \in [k] \mid x \text{ has a neighbor in } X_j\}) & \text{if } d_G(x) > 0, \text{ and} \\ (i, [k] \setminus \{i\}) & \text{if } d_G(x) = 0. \end{cases}$$

Since no $v \in X_i$ has a neighbor in X_i , φ is clearly a mapping from V(G) to $V(G_k)$.

Let uv be any edge of G, say with $u \in X_i$ and $v \in X_j$. Then $i \neq j$, and φ maps uand v to vertices (i,A) and (j,B) of G_k respectively, with $j \in A$ and $i \in B$. For every $\ell \in [k]$, the fact that c is a strong k-coloring of G implies that at most one of u and v has a neighbor in X_ℓ , so $A \cap B = \emptyset$ follows, by the definition of φ . Hence (i,A) and (j,B) are adjacent in G_k , which proves that φ is a homomorphism.

Theorem 2.1 implies that G_k has a strong k-coloring. Consequently, $\chi(G_k) \leq k$. In order to prove that G_k is a k-critical graph, we first prove the following result.

Proposition 2.1. There is a homomorphism from $M_4(G_{k-1})$ to G_k for $k \ge 3$.

Proof. Let $H = M_4(G_{k-1}, p_1, p_2, p_3, p_4)$ and $X = V(G_{k-1})$. For j = 1, 2, 3, 4, denote by $x^j = p_j(x)$ the *j*th copy of the vertex $x \in X$ and, let $X_j = \{x^j \mid x \in X\}$. Then

$$V(H) = X_1 \cup X_2 \cup X_3 \cup X_4 \cup \{z\}$$

and

$$E(H) = E \cup E_1 \cup E_2 \cup E_3 \cup E_4,$$

where

$$E = \{x^{1}y^{1} \mid xy \in E(G_{k-1})\}, E_{4} = \{x^{4}z \mid x \in X\},\$$

and, for j = 1, 2, 3,

$$E_{i} = \{x^{j}y^{j+1} \mid xy \in E(G_{k-1})\}.$$

For a vertex $x = (i, A) \in X = V(G_{k-1})$, we have $i \in [k-1], A \subseteq [k-1], A \neq \emptyset$, and $i \notin A$. Then, let

$$\varphi(x^{j}) = \begin{cases} (i,A) & \text{if } j = 1, \\ (i,A \cup \{k\}) & \text{if } j = 2, \\ (k,A) & \text{if } j = 3, \\ (i,\{k\}) & \text{if } j = 4. \end{cases}$$

Moreover, let

$$\varphi(z) = (k, \{1, \ldots, k-1\}).$$

Then, clearly, φ is a mapping from V(H) to $V(G_k)$ and it is straightforward to check that if uv is an edge of H, then $\varphi(u)\varphi(v)$ is an edge of G_k . Thus, φ is a homomorphism from $H = M_4(G_{k-1})$ to G_k .

Theorem 2.2. The graph G_k is k-chromatic for every $k \ge 2$.

Proof. We prove by induction on k that there is a homomorphism from H_k to G_k . For k = 2 (in fact for k = 3 too), H_k and G_k are isomorphic. Assuming that there is a homomorphism from H_{k-1} to G_{k-1} , one can obviously extend it to a homomorphism of $M_4(H_{k-1}) = H_k$ to $M_4(G_{k-1})$. But Proposition 2.1 ensures that this can be continued to G_k , which results in the required homomorphism. Since $H_k \in \mathbf{M}_k$, we then infer from Theorem 1.1 that $\chi(G_k) \ge \chi(H_k) = k$.

Theorem 2.3. The graph G_k is k-critical for every $k \ge 2$.

Proof. By Theorem 2.2, we only have to show that every proper subgraph of G_k is colorable with fewer than k colors. To do this, it is sufficient to show that $G_k - e$ has a (k - 1)-coloring for all edges e of G_k . We prove this by induction on $k \ge 2$. The bottom case is trivial, with $G_2 = K_2$.

Now, assume that $k \ge 3$. Let xy be an arbitrary edge of G_k . Then x = (i', A')and y = (j', B') where $i', j' \in [k], A', B' \subseteq [k], A' \neq \emptyset, B' \neq \emptyset, i' \notin A'$ and $j' \notin B'$. Since xy is an edge of G_k , we have $i' \in B', j' \in A'$ and $A' \cap B' = \emptyset$. By symmetry and since $k \ge 3$, we may assume that $k \neq i', j'$ and $k \notin A'$. Then we partition the vertex set of G_k into four classes, namely

$$\begin{split} X_1 &= \{ (i,A) \mid i \in [k-1], A \subseteq [k-1], A \neq \emptyset, i \notin A \}, \\ X_2 &= \{ (i,A \cup \{k\}) \mid (i,A) \in X_1 \}, \\ X_3 &= \{ (k,A) \mid A \subseteq [k-1] \}, \\ X_4 &= \{ (i,\{k\}) \mid i \in [k-1] \}, \end{split}$$

and the additional vertex z = (k, [k-1]). Clearly, $x \in X_1$ and $y \in X_1 \cup X_2$. Furthermore, $G_k[X_1] = G_{k-1}$ and if *e* is an edge of G_k , then *e* joins two vertices of X_1 ,

or a vertex of X_i with a vertex of X_{i+1} for some $i \in \{1, 2, 3\}$, or a vertex of X_4 with the vertex z. In particular, X_2 , X_3 and X_4 are independent sets in G_k .

If $y \in X_1$, then xy is an edge of $G_{k-1} = G_k[X_1]$, and, by induction, there exists a (k-2)-coloring of $G_{k-1} - xy$. This coloring may be extended to a (k-1)-coloring of $G_k - xy$ by coloring all vertices of $X_2 \cup X_4$ with the new color k-1, and coloring all vertices of $X_3 \cup \{z\}$ with an old color, say color 1.

If $y = (j', B') \in X_2$, then $u = (j', B' - \{k\})$ is a vertex of X_1 that is also adjacent to x, and, by induction, there exists a (k - 2)-coloring of $G_{k-1} - xu$. This coloring may be extended to a (k - 1)-coloring of $G_k - xy$ as follows. First, we give each vertex $(i, A \cup \{k\}) \in X_2$ the color of its corresponding vertex $(i, A) \in X_1$. Then we recolor u by the new color k - 1 and use this color to color all vertices of $X_3 \cup \{z\}$. Finally, we color all vertices of X_4 with an old color.

Therefore, in both cases, we obtain a (k - 1)-coloring of $G_k - xy$ and the proof is finished.

This section is concluded by stating an immediate corollary of Theorems 2.1 and 2.3.

Corollary 2.1. Assume that G is a graph with the minimum number of vertices among the k-chromatic graphs having a strong k-coloring. Then G is isomorphic to G_k .

3. PROOF OF THEOREM 1.1

The proof of Theorem 1.1 is based on a result of Lovász. We need some concepts from algebraic topology, see [2] or [12] for the details.

An (abstract) simplicial complex $\mathcal{K} = (V, \Delta)$ is a set $V = V(\mathcal{K})$ (the vertex set of \mathcal{K}) together with a set $\Delta = \Delta(\mathcal{K})$ of non-empty finite subsets of V (called simplices or faces of \mathcal{K}) such that $\emptyset \neq \sigma \subseteq \tau \in \Delta$ implies $\sigma \in \Delta$. Usually, $V = \bigcup_{\sigma \in \Delta} \sigma$. If $V(\mathcal{K})$ is a finite set, then we briefly say that \mathcal{K} is finite. Let $S^d = \{x \in \mathbb{R}^{d+1} \mid ||x|| = 1\}$ and $B^d = \{x \in \mathbb{R}^d \mid ||x|| \leq 1\}$ denote the d-

Let $S^d = \{x \in \mathbb{R}^{d+1} | ||x|| = 1\}$ and $B^d = \{x \in \mathbb{R}^d | ||x|| \le 1\}$ denote the *d*dimensional sphere and *d*-dimensional ball, respectively. A topological space \mathcal{T} is *m*-connected for $m \ge 0$ if every continuous map $f: S^d \longrightarrow \mathcal{T}$ for $0 \le d \le m$ has a continuous extension over B^{d+1} .

For any graph *G*, let $\mathcal{N}(G)$ be the simplicial complex, called the *neighborhood complex* of *G*, whose vertex set is V(G) and whose simplices are those sets of vertices which have a common neighbor in *G*, i.e., $\sigma \in \Delta(\mathcal{N}(G))$ iff $\emptyset \neq \sigma \subseteq N_G(x)$ for some $x \in V(G)$. In 1978, Lovász [5] proved the following remarkable result.

Theorem 3.1. For any graph G, if $\mathcal{N}(G)$ is a (k-3)-connected topological space where $k \geq 3$, then $\chi(G) \geq k$.

Let \mathcal{K} be a finite simplicial complex. The *cone* over \mathcal{K} , denoted by $C(\mathcal{K})$, is the complex with $V(C(\mathcal{K})) = V(\mathcal{K}) \cup \{a\}$ and $\Delta(C(\mathcal{K})) = \Delta(\mathcal{K}) \cup \{\sigma \cup \{a\} \mid \sigma \in \Delta(\mathcal{K}) \cup \{\emptyset\}$ for an $a \notin V(\mathcal{K})$. The *suspension* of \mathcal{K} , denoted by $S(\mathcal{K})$, is the complex with $V(S(\mathcal{K})) = V(\mathcal{K}) \cup \{a, b\}$ and $\Delta(S(\mathcal{K})) = \Delta(\mathcal{K}) \cup \{\sigma \cup \{x\} \mid \sigma \in \Delta(\mathcal{K}) \cup \{\emptyset\}$ and $x \in \{a, b\}\}$, with $a, b \notin V(\mathcal{K})$ and $a \neq b$.

Furthermore, for $r \ge 1$, we construct a new complex denoted by $M_r(\mathcal{K}) = M_r(\mathcal{K}, q_1, \ldots, q_r)$ as follows. For $1 \le i \le r$, let q_i denote a bijection from the set $V(\mathcal{K})$ to a set Y_i , where the sets Y_1, \ldots, Y_r are pairwise disjoint. For $1 \le i \le r - 1$, let

$$\Delta_i = \{ \sigma \, | \, \emptyset \neq \sigma \subseteq q_i(\tau) \cup q_{i+1}(\tau) \& \tau \in \Delta(\mathcal{K}) \},\$$

further, let

$$\Delta_0 = \{ \sigma \, | \, \emptyset \neq \sigma \subseteq Y_1 \},$$

and,

$$\Delta_r = \{ \sigma \, | \, \emptyset \neq \sigma \subseteq q_r(\tau) \cup \{ z \} \& \tau \in \Delta(\mathcal{K}) \},$$

where z is a new vertex. Then

$$V(M_r(\mathcal{K})) = \bigcup_{i=1}^r Y_i \cup \{z\}$$
 and $\Delta(M_r(\mathcal{K})) = \bigcup_{i=0}^r \Delta_i$.

Note that, for $1 \le i \le r$, the complex $\mathcal{K}_i = (Y_i, \{q_i(\tau) \mid \tau \in \Delta(\mathcal{K})\})$ is an isomorphic copy of \mathcal{K} . Clearly, $(Y_r \cup \{z\}, \Delta_r) = C(\mathcal{K}_r)$ and (Y_1, Δ_0) is a full simplex and, therefore, a contractible space. Furthermore, for $1 \le i \le r - 1$, the complex $(Y_i \cup Y_{i+1}, \Delta_i)$ is homotopy equivalent to $\mathcal{K} \times I$ where I is the unit interval. Then the complex $(\bigcup_{i=1}^r Y_i, \bigcup_{i=1}^{r-1} \Delta_i)$ is homotopy equivalent to $\mathcal{K} \times [0, r - 1]$. Therefore, the complex $M_1(\mathcal{K})$ is homotopy equivalent to a space obtained from the cone over \mathcal{K} by identifying the base of the cone and, for $r \ge 2$ the complex $M_r(\mathcal{K})$ is homotopy equivalent to a space that is the quotient with respect to \mathcal{K} of a full simplex (Y_1, Δ_0) , a homotopy $\mathcal{K} \times [0, r - 1]$ and a cone $C(\mathcal{K})$. Consequently, we have the following result.

Lemma 3.1. For every finite simplicial complex \mathcal{K} and every $r \ge 1$, the complex $M_r(\mathcal{K})$ is homotopy equivalent to the suspension $S(\mathcal{K})$.

Lemma 3.2. For every graph G and every $r \ge 1$, $\mathcal{N}(M_r(G)) = M_r(\mathcal{N}(G))$.

Proof. Let $H = M_r(G, p_1, \ldots, p_r)$ and $\mathcal{K} = \mathcal{N}(G)$. If r = 2s, then it is not difficult to check that $\mathcal{N}(H) = M_r(\mathcal{K}, q_1, \ldots, q_r)$ with $q_i = p_{r-2i+2}$ and $q_{s+i} = p_{2i-1}$ for $1 \le i \le s$. Similarly, if r = 2s + 1, then $\mathcal{N}(H) = M_r(\mathcal{K}, q_1, \ldots, q_r)$ with $q_i = p_{r-2i+2}$ for $1 \le i \le s + 1$ and $q_{s+i+1} = p_{2i}$ for $1 \le i \le s$.

Proof of Theorem 1.1. First, we claim that for every integer $k \ge 3$ and every graph $G \in \mathbf{M}_k$, the topological space $\mathcal{N}(G)$ is homotopy equivalent to the (k-2)-dimensional sphere S^{k-2} which is a (k-3)-connected space.

We prove this claim by induction on k. For k = 3 the claim is evident, since every graph in \mathbf{M}_3 is an odd circuit. Now, assume that $H \in \mathbf{M}_{k+1}$ where $k \ge 3$. Then $H = M_r(G)$ for some graph $G \in \mathbf{M}_k$ and some integer $r \ge 1$. From the induction hypothesis, it follows that $\mathcal{N}(G)$ is homotopy equivalent to the sphere S^{k-2} . By Lemmas 3.1 and 3.2, $\mathcal{N}(H)$ is homotopy equivalent to the suspension of $\mathcal{N}(G)$ and, therefore, to the sphere $S^{k-1} = S(S^{k-2})$. This proves the claim.

Now, we conclude from Theorem 3.1 that $\chi(G) \ge k$ for every graph $G \in \mathbf{M}_k$. On the other hand, $\chi(G) \le k$ for every graph $G \in \mathbf{M}_k$. Thus Theorem 1.1 is proved.

In [8] as well as in [14], a purely combinatorial proof for Theorem 1.1 in case of k = 4 is given. However, such a proof is not known for $k \ge 5$.

Lemma 3.3. Let G be a k-critical graph $(k \ge 2)$ and let $H = M_r(G)$ for some integer $r \ge 1$. Then H is (k + 1)-critical provided that $\chi(H) = k + 1$.

Proof. Assume that $H = M_r(G, p_1, ..., p_r)$ and $X_i = p_i(V(G))$ for i = 1, ..., r. Note that $V(H) = X_1 \cup \cdots \cup X_r \cup \{z\}, X_1 = V(G)$ and $G = H[X_1]$. For the proof of Lemma 3.3 it is sufficient to show that H - e has a k-coloring for all edges e of H. We distinguish three cases.

Case 1. $e \in E(G)$. Then there is a (k - 1)-coloring of G - e and, since $H - X_1$ is bipartite, this coloring can be extended to some *k*-coloring of H - e.

Case 2. $e = p_i(a)p_{i+1}(b)$ with $1 \le i \le r-1$. Then $e' = ab \in E(G)$ and, therefore, there is a (k-1)-coloring f of G - e'. Since G is not (k-1)-colorable, f(a) = f(b). Now, we define a map g as follows. For $1 \le j \le i$ and $x \in V(G)$, let

$$g(p_j(x)) = \begin{cases} f(x) & \text{if } x \neq b, \\ k & \text{if } x = b. \end{cases}$$

Furthermore, let $g(p_{i+1}(x)) = f(x)$ for all $x \in V(G)$. Then it is easy to check that g is a k-coloring of the subgraph $H[X_1 \cup \cdots \cup X_{i+1}] - e$. Clearly, g can be extended to some k-coloring of H - e.

Case 3. $e = p_r(a)z$. Since G is k-critical, there is a k-coloring f of $G = H[X_1]$ such that f(x) = k only for x = a. Now, color each vertex $p_i(x)$ with f(x) and color the vertex z with the new color k. This results in a k-coloring of H - e.

As a consequence of Lemma 3.3 and Theorem 1.1, we obtain the following result.

Theorem 3.2. Every graph $G \in \mathbf{M}_k$ with $k \ge 3$ is k-critical.

4. GRAPHS H_{κ}^{ℓ}

For fixed integer $\ell \ge 1$, we recursively define a sequence of graphs H_k^{ℓ} for k = 2, 3, ... as follows. For k = 2, we let $H_2^{\ell} = K_2$ (independently of ℓ). For $k \ge 3$, we define $H_k^{\ell} = M_{3\ell+1}(H_{k-1}^{\ell})$.

For $X \subseteq V(G)$ and an integer $j \ge 0$, we will let $N_G^j(X)$ denote the *j*th distance class from X in G, i.e., the set of those $v \in V(G)$ such that G contains some path of length *j* from v to a vertex in X, but no shorter path of this type. Note that $N_G^0(X) = X$.

Let k, ℓ be integers with $k \ge 2$ and $\ell \ge 1$. Let \mathbf{S}_k^{ℓ} denote the class of all graphs G that have a k-coloring $c = \{X_1, \ldots, X_k\}$ such that $N_G^j(X_i)$ is independent in G for each $i \in \{1, \ldots, k\}$ and $j \in \{1, \ldots, \ell\}$.

Theorem 4.1. For every $k \ge 2$ and $\ell \ge 1$, the graph H_k^{ℓ} is k-chromatic and belongs to \mathbf{S}_k^{ℓ} .

Proof. It follows directly from the construction and using Theorem 1.1 that H_k^{ℓ} is k-chromatic. Note that $H_2^{\ell} = K_2$ and $H_3^{\ell} = C_{6\ell+3}$.

It remains to prove the existence of a k-coloring $c = \{X_1, X_2, ..., X_k\}$ of H_k^{ℓ} with the required property. For this, we use induction on $k \ge 2$. Since $H_2^{\ell} = K_2$, the statement is trivial when k = 2.

Now, assume that $k \ge 3$. Then $H_k^{\ell} = M_{3\ell+1}(H_{k-1}^{\ell})$ and, by induction, there exists a (k-1)-coloring $c = \{X'_1, X'_2, \dots, X'_{k-1}\}$ of H_{k-1}^{ℓ} such that $N_{H_{k-1}^{\ell}}^{j}(X'_i)$ is independent in H_{k-1}^{ℓ} for all i, j with $1 \le i \le k-1$ and $1 \le j \le \ell$.

From the construction of $M_{3\ell+1}(H_{k-1}^{\ell})$, there is, in particular, a partition $V^0 \cup V^1 \cup \ldots V^{3\ell-1} \cup V^{3\ell} \cup \{z\}$ of $V(H_k^{\ell})$ with $V^0 = V(H_{k-1}^{\ell})$, and where $V^t = \{v^t = p_t(v) | v \in V(H_{k-1}^{\ell})\}$ are independent sets, $t = 1, 2, \ldots, 3\ell$ (and p_t is the bijection of V^0 to V^t). We define for $i = 1, 2, \ldots, k-1$,

$$X_i = \{v^t \mid v \in X'_i, t = 0, 1, \dots, \ell - 1, \ell, \ell + 2, \ell + 4, \dots, 3\ell - 2, 3\ell\}.$$

That each of these sets is independent in H_k^{ℓ} follows from the construction of $M_r(G)$, where we use that each X'_i is independent in H_{k-1}^{ℓ} . The final class X_k is given by

$$X_k = V^{\ell+1} \cup V^{\ell+3} \cup \dots \cup V^{3\ell-3} \cup V^{3\ell-1} \cup \{z\}.$$

This is again an independent set in H_k^{ℓ} , since it is, by the construction of $M_r(G)$, a union of independent sets no two of which are joined by an edge. Thus $c = \{X_1, X_2, \ldots, X_k\}$ indeed defines a k-coloring of H_k^{ℓ} .

For $j = 1, ..., \ell$, we need to show that the *j*th distance class from each X_i is an independent set in H_k^{ℓ} , i = 1, 2, ..., k. Suppose that this fails for some $i \le k - 1$. Then there are vertices u^s , $v^t \in X_i$ and a walk W of odd length at most $2\ell + 1$ from u^s to v^t in H_k^{ℓ} . Then W does not use the vertex z, since every walk in H_k^{ℓ} using z and having length at most $2\ell + 1$ must use vertices from X_k alternately,

but *W* has odd length and no end in X_k . So by projecting *W* down to H_{k-1}^{ℓ} , there exists a walk *W'* of odd length at most $2\ell + 1$ in H_{k-1}^{ℓ} between vertices $u, v \in X'_i$, which is a contradiction to the induction hypothesis (possibly for a different color class than X'_i in H_{k-1}^{ℓ} in the case when *W'* contains an odd circuit).

Finally, consider a walk in H_k^{ℓ} which starts and ends in X_k . If it uses any vertex from V^0 , then its length is at least $2\ell + 2$, since the distance from V^0 to X_k is $\ell + 1$ in H_k^{ℓ} . Since $H_k^{\ell} - V_0$ is bipartite, this implies that the length of the walk is at least $2\ell + 3$ if it is odd. Hence the *j*th distance classes from X_k are independent, $j = 1, \ldots, \ell$.

As pointed out by one of the referees, there is also a homomorphism universal graph G_k^{ℓ} in \mathbf{S}_k^{ℓ} . The vertices of G_k^{ℓ} are the couples of the form (i, A) where $i \in [k]$ and A is a subset of $[k]^{\ell}$ consisting of strings (x_1, \ldots, x_{ℓ}) where $x_1 \neq i$ and $x_j \neq x_{j-1}$ for $j = 2, \ldots, \ell$. The edges of G_k^{ℓ} are the pairs (i, A), (j, B) such that for every

FIGURE 2. An embedding of H_4 quadrangulating the real projective plane.

 $(x_1, \ldots, x_{\ell}) \in A, (y_1, \ldots, y_{\ell}) \in B$ we have $(j, y_1, \ldots, y_{\ell-1}) \in A, (i, x_1, \ldots, x_{\ell-1}) \in B$ and $x_t \neq y_t$ for $t = 1, \ldots, \ell$.

5. CONCLUDING REMARKS

We will indicate a separate argument for proving that H_4 and G_4 are 4-chromatic graphs. It is straightforward to show that H_4 may be drawn as a quadrangulation of the real projective plane, an embedding such that every face is bounded by a 4-circuit, see Figure 2. We observe that the subgraph $H_3 = G_3$ of H_4 corresponds precisely to the horizontally drawn edges of Figure 2. Each vertex of H_4 is marked in this figure with the name of the vertex of G_4 to which it is mapped by the homomorphism φ from H_4 to G_4 , the existence of which is proved in Theorem 2.2. Since φ is a composition of homomorphisms, each of which maps two opposite corners of a face to a single vertex and fixes all the remaining

FIGURE 3. An embedding of G_4 quadrangulating the real projective plane.

vertices, it follows that also G_4 may be drawn as a quadrangulation of the real projective plane. Figure 3 shows such a drawing of G_4 in a more symmetric way than obtained directly from Figure 2 by applying φ . Arguments due to Gallai [3], later developed in a more explicit form by Youngs [16], show that any graph which quadrangulates the projective plane is either bipartite or 4-chromatic. Hence G_4 is 4-chromatic, since G_4 contains an odd circuit, namely $G_3 = C_9$. By the same reason also, H_4 is 4-chromatic. This argument can be also used to show that all graphs of the form $M_r(C_{2s+1})$ $(r, s \ge 2)$ are 4-chromatic.

For every $r \ge 1$, the graph $L_r = M_r(C_{2r+1})$ is a 4-critical graph with n = r(2r+1) + 1 vertices such that every odd circuit of L_r has length $\ge 2r + 1 \ge \sqrt{2n}$. This fact was first proved by Stiebitz [13] (see also [10]) and later rediscovered, independently, by Ngoc and Tuza [8] and by Youngs [16]. That all graphs of the family $M_r(C_{2s+1})$ are 4-chromatic was also proved by Payan [9] and, recently, by Tardif [14].

REFERENCES

- I. Bárány, A short proof of Kneser's conjecture, J Combin Theory Ser A 25 (1978), 325–326.
- [2] A. Björner, Topological methods, Handbook of Combinatorics, R. L. Graham, et al. (Editors), Elsevier Science B.V., Amsterdam, 1995, pp. 1819–1872.
- [3] T. Gallai, Kritische Graphen I, Publ Math Inst Hungar Acad Sci 8 (1963), 165–192.
- [4] U. S. R. Murty, personal communication, 1997.
- [5] L. Lovász, Kneser's conjecture, chromatic number, and homotopy, J Combin Theory Ser A 25 (1978), 319–324.
- [6] L. Lovász, Combinatorial Problems and Exercises, Akad Kiadó, Budapest, 1979.
- [7] J. Mycielski, Sur le coloriage des graphes, Colloq Math 3 (1955), 161– 162.
- [8] N. V. Ngoc and Zs. Tuza, 4-chromatic graphs with large odd girth, Discrete Math 138 (1995), 387–392.
- [9] C. Payan, On the chromatic number of cube-like graphs, Discrete Math 103 (1992), 271–277.
- [10] H. Sachs and M. Stiebitz, On constructive methods in the theory of colorcritical graphs, Discrete Math 74 (1989), 201–226.
- [11] M. Schäuble, Bemerkungen zur Konstruktion dreikreisfreier k-chromatischer Graphen, Wiss Zeitschrift TH Ilmenau 15 (1969), Heft 2, 59–63.
- [12] E. H. Spanier, Algebraic Topology, Springer, New York, 1989.
- [13] M. Stiebitz, Beiträge zur Theorie der färbungskritischen Graphen, Habilitation, TH Ilmenau, 1985.

- [14] C. Tardif, The fractional chromatic numbers of cones over graphs, J Graph Theory 38 (2001), 87–94.
- [15] Zs. Tuza and V. Rödl, On color–critical graphs, J Combin Theory Ser B 38 (1985), 204–213.
- [16] D. A. Youngs, 4-chromatic projective graphs, J Graph Theory 21 (1996), 219–227.