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Abstract: We prove that for every k there is a k -chromatic graph with a
k-coloring where the neighbors of each color-class form an independent
set. This answers a question raised by N. J. A. Harvey and U. S. R. Murty
[4]. In fact we find the smallest graph Gk with the required property for
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every k . The graph Gk exhibits remarkable similarity to Kneser graphs. The
proof that Gk is k-chromatic relies on Lovász’s theorem about the chromatic
number of graphs with highly connected neighborhood complexes.
� 2004 Wiley Periodicals, Inc. J Graph Theory 46: 1–14, 2004
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1. INTRODUCTION

Our starting point is the following problem raised by N. J. A. Harvey and

U. S. R. Murty [4].

For a given positive integer k, is there a k-chromatic graph G with a

k-coloring c ¼ fX1; . . . ;Xkg such that NGðXiÞ is independent1 for each color-class

Xi; 1 � i � k.

By a k-coloring of a graph G, we mean a partition c ¼ fX1; . . . ;Xkg of the

vertex set of G into k independent sets of G (empty sets are allowed). If x is a

vertex of G with x 2 Xi, then we also write cðxÞ ¼ i and say that x is colored with

color i. The chromatic number �ðGÞ of G is the smallest number k such that G has

a k-coloring. If �ðGÞ ¼ k, then we briefly say that G is k-chromatic. A graph G is

called k-critical if G is k-chromatic but every proper subgraph of G has a ðk � 1Þ-
coloring. The notation NGðXÞ is used for the set of vertices of G adjacent to some

vertex of X where X � VðGÞ. Furthermore, G½X� denotes the subgraph of G

induced by X. A k-coloring c ¼ fX1; . . . ;Xkg of a graph G is called a strong k-

coloring if NGðXiÞ is independent for each color-class Xi; 1 � i � k. Clearly,

every graph that has a strong k-coloring must be triangle-free.

We shall give a positive answer to the above question by constructing k-

chromatic graphs Gk and Hk (for every integer k � 2). The graphs Gk are defined

non-recursively, they have some resemblance to Kneser graphs. Let k � 2 be an

integer. We let ½k� denote the set f1; . . . ; kg. The graph Gk is defined as the graph

whose vertices are the pairs ði;AÞ that satisfy i 2 ½k�; A � ½k�; i 62 A and A 6¼ ;,

and whose edges are those tuples ði;AÞð j;BÞ that satisfy i 2 B; j 2 A and

A \ B ¼ ;. Then Gk has kð2k�1 � 1Þ vertices. The smallest of these graphs are

G2 ¼ K2 and G3 ¼ C9. Figure 1 shows the graph G4.

Let Sk denote the class of all graphs that have a strong k-coloring. We prove

that Gk is homomorphism universal in Sk, that is, G 2 Sk if and only if G has a

homomorphism to Gk (Theorem 2.1). We also show that Gk is k-chromatic

(Theorem 2.2) and even k-critical (Theorem 2.3) for all k � 2. These results give

the somewhat surprising corollary that Gk is the unique smallest k-chromatic

graph in Sk (Corollary 2.1).

1The problem in its original form asks only if the chromatic number of G½NGðXiÞ� can be

made strictly less thank k � 1. We will consider and solve only the strongest possible

version of this question, i.e., whether this chromatic number can be one, which was

suggested by B. Toft.
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The graphs Hk will be defined recursively, in fact they are obtained by a

generalised Mycielski construction. Let G be a graph and let r � 1 be an integer.

We construct a new graph denoted by MrðGÞ ¼ MrðG; p1; . . . ; prÞ as follows. For

1 � i � r, let pi denote a bijection from the vertex set VðGÞ to a set Xi, where p1

is the identity map of X1 ¼ VðGÞ and the sets X1; . . . ;Xr are pairwise disjoint. For

1 � i � r � 1, let

Ei ¼ fpiðxÞpiþ1ðyÞ j xy 2 EðGÞg;

further, let

Er ¼ fprðxÞz j x 2 VðGÞg;

where z is an additional vertex. Then

VðMrðGÞÞ ¼
[r

i¼1

Xi [ fzg and EðMrðGÞÞ ¼ EðGÞ [
[r

i¼1

Ei:

Clearly, if H ¼ MrðGÞ, then H½X1� ¼ G and H � EðGÞ as well as H � X1 are

bipartite. The graph M1ðGÞ is the complete join of G and K1. For the special case

r ¼ 2, this construction was invented in 1955 by Mycielski [7] in order to

generate a sequence of triangle-free k-chromatic graphs for k � 2. In 1968,

FIGURE 1. The graph G4.
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Schäuble [11], see also [6, problem 9.18], proved that �ðM2ðGÞÞ ¼ �ðGÞ þ 1

and, moreover, that M2ðGÞ remains critical provided that G is critical.

In 1985, Tuza and Rödl [15] observed that the graph MrðKkÞ is ðk þ 1Þ-critical

for all r � 1; thus they obtained infinitely many ðk þ 1Þ-critical graphs (k � 2)

which can be made bipartite by the deletion of only k
2

� �
edges. They also proved

in [15] that this bound is best possible. Note that MrðK2Þ ¼ C2rþ1.

Clearly, �ðMrðGÞÞ � �ðGÞ þ 1 holds for all r � 1. Equality holds for r ¼ 1; 2

but not in general. For every integer k � 4, let Fk denote the complete join of the

complete graph on k � 4 vertices with the square of the circuit C7. Then it is

proved in [14] that �ðFkÞ ¼ �ðM3ðFkÞÞ ¼ k. However, if we repeatedly apply the

generalised Mycielski construction to an odd circuit, then in each step the

chromatic number increases by one. For k � 3, let Mk denote the class of graphs

defined recursively as follows:

(1) M3 consists of all odd circuits, and, for k � 3,

(2) Mkþ1 ¼ fMrðGÞ jG 2 Mk and r � 1g.

The following result is due to Stiebitz [13], see also [10].

Theorem 1.1. Every graph G 2 Mk with k � 3 is k-chromatic.

In [13], this theorem is used to generate for every k � 4 an infinite sequence of

k-critical graphs without short odd circuits. Since the proof in [13] is not easily

available, it is given in a subsequent section.

The graphs Hk are special members of Mk, defined recursively as Hkþ1 ¼
M4ðHkÞ starting with H2 ¼ K2. Observe that H3 ¼ G3 ¼ C9, however H4 and G4

are distinct (the former has 37, the latter has 28 vertices). On one hand, we use Hk

to prove that Gk is k-chromatic by showing that Hk has a homomorphism to Gk

(Theorem 2.2). On the other hand, Hk is a special case (‘ ¼ 1) of the graphs H‘
k

for which we prove the following property (a generalisation of the Harvey and

Murty property).

H‘
k is a k-chromatic graph with a k-coloring c ¼ fX1; . . . ;Xkg such that

N
j

Hl
k

ðXiÞ is independent for each i 2 f1; . . . ; kg, and for each j 2 f1; . . . ; ‘g,

where N
j
GðXÞ is the set of vertices of G with distance j from X (Theorem 4.1).

Notice that the bound ‘ on j is essential in the generalisation. Without it, only

bipartite graphs satisfy this property.

We conclude the Introduction with the following problem. We could prove

that Gk is k-chromatic via a homomorphism from Hk which is proved to be

k-chromatic by Lovász’s theorem [5]. Is it possible to show that Gk is k-chromatic

using a more direct proof? Like Bárány’s proof for the Kneser graphs [1].

2. PROPERTIES OF GK

Theorem 2.1. Let k � 2 be an integer. A graph G has a strong k-coloring if and

only if there exists a homomorphism of G into Gk.
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Proof. For the ‘‘if’’ direction, assume that ’:VðGÞ ! VðGkÞ is a homo-

morphism of G into Gk. For i 2 ½k�, let Yi ¼ fði;AÞ j ; 6¼ A � ½k�nfigg. Clearly, Yi

is an independent set in Gk. Furthermore, NGk
ðYiÞ ¼ fðj;BÞji 2 B � ½k�nfjgg

implying that NGk
ðYiÞ is also an independent set in Gk. Consequently, c0 ¼

fY1; . . . ;Ykg is a strong k-coloring of Gk. Since ’ is a homomorphism of G into

Gk, this implies that the partition c ¼ fX1; . . . ;Xkg with Xi ¼ fv 2 VðGÞj
’ðvÞ 2 Yig for i 2 ½k� is a strong k-coloring of G.

For the ‘‘only if’’ direction, assume that c ¼ fX1; . . . ;Xkg is a strong

k-coloring of G. We will show that the mapping ’ defined as follows is a

homomorphism from G to Gk. For every i 2 ½k� and every x 2 Xi, let

’ðxÞ ¼ ði; fj 2 ½k� j x has a neighbor in XjgÞ if dGðxÞ > 0; and

ði; ½k�nfigÞ if dGðxÞ ¼ 0:

�

Since no v 2 Xi has a neighbor in Xi, ’ is clearly a mapping from VðGÞ to

VðGkÞ.
Let uv be any edge of G, say with u 2 Xi and v 2 Xj. Then i 6¼ j, and ’ maps u

and v to vertices ði;AÞ and ðj;BÞ of Gk respectively, with j 2 A and i 2 B.

For every ‘ 2 ½k�, the fact that c is a strong k-coloring of G implies that at

most one of u and v has a neighbor in X‘, so A \ B ¼ ; follows, by the definition

of ’. Hence ði;AÞ and ðj;BÞ are adjacent in Gk, which proves that ’ is a

homomorphism. &

Theorem 2.1 implies that Gk has a strong k-coloring. Consequently, �ðGkÞ � k.

In order to prove that Gk is a k-critical graph, we first prove the following

result.

Proposition 2.1. There is a homomorphism from M4ðGk�1Þ to Gk for k � 3.

Proof. Let H ¼ M4ðGk�1; p1; p2; p3; p4Þ and X ¼ VðGk�1Þ. For j ¼ 1; 2; 3; 4,

denote by xj ¼ pjðxÞ the jth copy of the vertex x 2 X and, let Xj ¼ fxj j x 2 Xg.

Then

VðHÞ ¼ X1 [ X2 [ X3 [ X4 [ fzg

and

EðHÞ ¼ E [ E1 [ E2 [ E3 [ E4;

where

E ¼ fx1y1 j xy 2 EðGk�1Þg; E4 ¼ fx4z j x 2 Xg;

and, for j ¼ 1; 2; 3,

Ej ¼ fxjyjþ1 j xy 2 EðGk�1Þg:

STRONGLY INDEPENDENT COLOR-CLASSES 5



For a vertex x ¼ ði;AÞ 2 X ¼ VðGk�1Þ, we have i 2 ½k � 1�;A � ½k � 1�;A 6¼ ;;
and i 62 A. Then, let

’ðxjÞ ¼

ði;AÞ if j ¼ 1;
ði;A [ fkgÞ if j ¼ 2;
ðk;AÞ if j ¼ 3;
ði; fkgÞ if j ¼ 4:

8>><
>>:

Moreover, let

’ðzÞ ¼ ðk; f1; . . . ; k � 1gÞ:

Then, clearly, ’ is a mapping from VðHÞ to VðGkÞ and it is straightforward to

check that if uv is an edge of H, then ’ðuÞ’ðvÞ is an edge of Gk. Thus, ’ is a

homomorphism from H ¼ M4ðGk�1Þ to Gk. &

Theorem 2.2. The graph Gk is k-chromatic for every k � 2.

Proof. We prove by induction on k that there is a homomorphism from Hk to

Gk. For k ¼ 2 (in fact for k ¼ 3 too), Hk and Gk are isomorphic. Assuming that

there is a homomorphism from Hk�1 to Gk�1, one can obviously extend it to a

homomorphism of M4ðHk�1Þ ¼ Hk to M4ðGk�1Þ. But Proposition 2.1 ensures that

this can be continued to Gk, which results in the required homomorphism. Since

Hk 2 Mk, we then infer from Theorem 1.1 that �ðGkÞ � �ðHkÞ ¼ k. Thus, by

Theorem 2.1, �ðGkÞ ¼ k. &

Theorem 2.3. The graph Gk is k-critical for every k � 2.

Proof. By Theorem 2.2, we only have to show that every proper subgraph of

Gk is colorable with fewer than k colors. To do this, it is sufficient to show that

Gk � e has a ðk � 1Þ-coloring for all edges e of Gk. We prove this by induction on

k � 2. The bottom case is trivial, with G2 ¼ K2.

Now, assume that k � 3. Let xy be an arbitrary edge of Gk. Then x ¼ ði0;A0Þ
and y ¼ ðj0;B0Þ where i0; j0 2 ½k�;A0;B0 � ½k�;A0 6¼ ;;B0 6¼ ;; i0 62 A0 and j0 62 B0.
Since xy is an edge of Gk, we have i0 2 B0; j0 2 A0 and A0 \ B0 ¼ ;. By symmetry

and since k � 3, we may assume that k 6¼ i0; j0 and k 62 A0. Then we partition the

vertex set of Gk into four classes, namely

X1 ¼ fði;AÞ j i 2 ½k � 1�;A � ½k � 1�;A 6¼ ;; i 62 Ag;
X2 ¼ fði;A [ fkgÞ j ði;AÞ 2 X1g;
X3 ¼ fðk;AÞ jA � ½k � 1�g;
X4 ¼ fði; fkgÞ j i 2 ½k � 1�g;

and the additional vertex z ¼ ðk; ½k � 1�Þ. Clearly, x 2 X1 and y 2 X1 [ X2. Fur-

thermore, Gk½X1� ¼ Gk�1 and if e is an edge of Gk, then e joins two vertices of X1,
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or a vertex of Xi with a vertex of Xiþ1 for some i 2 f1; 2; 3g, or a vertex of X4 with

the vertex z. In particular, X2, X3 and X4 are independent sets in Gk.

If y 2 X1, then xy is an edge of Gk�1 ¼ Gk½X1�, and, by induction, there

exists a ðk � 2Þ-coloring of Gk�1 � xy. This coloring may be extended to a

ðk � 1Þ-coloring of Gk � xy by coloring all vertices of X2 [ X4 with the

new color k � 1, and coloring all vertices of X3 [ fzg with an old color, say

color 1.

If y ¼ ðj0;B0Þ 2 X2, then u ¼ ðj0;B0 � fkgÞ is a vertex of X1 that is also adja-

cent to x, and, by induction, there exists a ðk � 2Þ-coloring of Gk�1 � xu. This

coloring may be extended to a ðk � 1Þ-coloring of Gk � xy as follows. First,

we give each vertex ði;A [ fkgÞ 2 X2 the color of its corresponding vertex

ði;AÞ 2 X1. Then we recolor u by the new color k � 1 and use this color to

color all vertices of X3 [ fzg. Finally, we color all vertices of X4 with an old

color.

Therefore, in both cases, we obtain a ðk � 1Þ-coloring of Gk � xy and the proof

is finished. &

This section is concluded by stating an immediate corollary of Theorems 2.1

and 2.3.

Corollary 2.1. Assume that G is a graph with the minimum number of vertices

among the k-chromatic graphs having a strong k-coloring. Then G is isomorphic

to Gk.

3. PROOF OF THEOREM 1.1

The proof of Theorem 1.1 is based on a result of Lovász. We need some concepts

from algebraic topology, see [2] or [12] for the details.

An (abstract) simplicial complex K ¼ ðV ;�Þ is a set V ¼ VðKÞ (the vertex set

of K) together with a set � ¼ �ðKÞ of non-empty finite subsets of V (called

simplices or faces of K) such that ; 6¼ � � � 2 � implies � 2 �. Usually,

V ¼
S

�2� �. If VðKÞ is a finite set, then we briefly say that K is finite.

Let Sd ¼ fx 2 Rdþ1 j kxk ¼ 1g and Bd ¼ fx 2 Rd j kxk � 1g denote the d-

dimensional sphere and d-dimensional ball, respectively. A topological space T
is m-connected for m � 0 if every continuous map f :Sd �!T for 0 � d � m has

a continuous extension over Bdþ1.

For any graph G, let NðGÞ be the simplicial complex, called the neigh-

borhood complex of G, whose vertex set is VðGÞ and whose simplices are those

sets of vertices which have a common neighbor in G, i.e., � 2 �ðN ðGÞÞ iff

; 6¼ � � NGðxÞ for some x 2 VðGÞ. In 1978, Lovász [5] proved the following

remarkable result.

Theorem 3.1. For any graph G, if NðGÞ is a ðk � 3Þ-connected topological

space where k � 3, then �ðGÞ � k.

STRONGLY INDEPENDENT COLOR-CLASSES 7



&

&

Let K be a finite simplicial complex. The cone over K, denoted by CðKÞ, is

the complex with VðCðKÞÞ ¼ VðKÞ [ fag and �ðCðKÞÞ ¼ �ðKÞ [ f� [ fag j
� 2 �ðKÞ [ f;g for an a 62 VðKÞ. The suspension of K, denoted by SðKÞ, is the

complex with VðSðKÞÞ ¼ VðKÞ [ fa; bg and �ðSðKÞÞ ¼ �ðKÞ [ f� [ fxg j� 2
�ðKÞ [ f;g and x 2 fa; bgg, with a; b 62 VðKÞ and a 6¼ b.

Furthermore, for r � 1, we construct a new complex denoted by MrðKÞ ¼
MrðK; q1; . . . ; qrÞ as follows. For 1 � i � r, let qi denote a bijection from the

set VðKÞ to a set Yi, where the sets Y1; . . . ; Yr are pairwise disjoint. For

1 � i � r � 1, let

�i ¼ f� j ; 6¼ � � qið�Þ [ qiþ1ð�Þ � 2 �ðKÞg;

further, let

�0 ¼ f� j ; 6¼ � � Y1g;

and,

�r ¼ f� j ; 6¼ � � qrð�Þ [ fzg � 2 �ðKÞg;

where z is a new vertex. Then

VðMrðKÞÞ ¼
[r

i¼1

Yi [ fzg and �ðMrðKÞÞ ¼
[r

i¼0

�i:

Note that, for 1 � i � r, the complex Ki ¼ ðYi; fqið�Þ j � 2 �ðKÞgÞ is an iso-

morphic copy of K. Clearly, ðYr [ fzg;�rÞ ¼ CðKrÞ and ðY1;�0Þ is a full

simplex and, therefore, a contractible space. Furthermore, for 1 � i � r � 1, the

complex ðYi [ Yiþ1;�iÞ is homotopy equivalent to K� I where I is the unit

interval. Then the complex ð
Sr

i¼1 Yi;
Sr�1

i¼1 �iÞ is homotopy equivalent to K�
½0; r � 1�. Therefore, the complex M1ðKÞ is homotopy equivalent to a space

obtained from the cone over K by identifying the base of the cone and, for r � 2

the complex MrðKÞ is homotopy equivalent to a space that is the quotient with

respect to K of a full simplex ðY1;�0Þ, a homotopy K� ½0; r � 1� and a cone

CðKÞ. Consequently, we have the following result.

Lemma 3.1. For every finite simplicial complex K and every r � 1, the complex

MrðKÞ is homotopy equivalent to the suspension SðKÞ.

Lemma 3.2. For every graph G and every r � 1; NðMrðGÞÞ ¼ MrðN ðGÞÞ.
Proof. Let H ¼ MrðG; p1; . . . ; prÞ and K ¼ NðGÞ. If r ¼ 2s, then it is not dif-

ficult to check that NðHÞ ¼ MrðK; q1; . . . ; qrÞ with qi ¼ pr�2iþ2 and qsþi ¼ p2i�1

for 1 � i � s. Similarly, if r ¼ 2s þ 1, then NðHÞ ¼ MrðK; q1; . . . ; qrÞ with qi ¼
pr�2iþ2 for 1 � i � s þ 1 and qsþiþ1 ¼ p2i for 1 � i � s. &
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Proof of Theorem 1.1. First, we claim that for every integer k � 3 and every

graph G 2 Mk, the topological space NðGÞ is homotopy equivalent to the

ðk � 2Þ-dimensional sphere Sk�2 which is a ðk � 3Þ-connected space.

We prove this claim by induction on k. For k ¼ 3 the claim is evident, since

every graph in M3 is an odd circuit. Now, assume that H 2 Mkþ1 where k � 3.

Then H ¼ MrðGÞ for some graph G 2 Mk and some integer r � 1. From the

induction hypothesis, it follows that NðGÞ is homotopy equivalent to the sphere

Sk�2. By Lemmas 3.1 and 3.2, NðHÞ is homotopy equivalent to the suspension of

NðGÞ and, therefore, to the sphere Sk�1 ¼ SðSk�2Þ. This proves the claim.

Now, we conclude from Theorem 3.1 that �ðGÞ � k for every graph G 2 Mk.

On the other hand, �ðGÞ � k for every graph G 2 Mk. Thus Theorem 1.1 is

proved. &

In [8] as well as in [14], a purely combinatorial proof for Theorem 1.1 in case

of k ¼ 4 is given. However, such a proof is not known for k � 5.

Lemma 3.3. Let G be a k-critical graph ðk � 2Þ and let H ¼ MrðGÞ for some

integer r � 1. Then H is ðk þ 1Þ-critical provided that �ðHÞ ¼ k þ 1.

Proof. Assume that H ¼ MrðG; p1; . . . ; prÞ and Xi ¼ piðVðGÞÞ for i ¼ 1; . . . ;
r. Note that VðHÞ ¼ X1 [ � � � [ Xr [ fzg; X1 ¼ VðGÞ and G ¼ H½X1�. For the

proof of Lemma 3.3 it is sufficient to show that H � e has a k-coloring for all

edges e of H. We distinguish three cases.

Case 1. e 2 EðGÞ. Then there is a ðk � 1Þ-coloring of G � e and, since H � X1

is bipartite, this coloring can be extended to some k-coloring of H � e.

Case 2. e ¼ piðaÞpiþ1ðbÞ with 1 � i � r � 1. Then e0 ¼ ab 2 EðGÞ and, there-

fore, there is a ðk � 1Þ-coloring f of G � e0. Since G is not ðk � 1Þ-colorable,

f ðaÞ ¼ f ðbÞ. Now, we define a map g as follows. For 1 � j � i and x 2 VðGÞ, let

gðpjðxÞÞ ¼
f ðxÞ if x 6¼ b;
k if x ¼ b:

�

Furthermore, let gðpiþ1ðxÞÞ ¼ f ðxÞ for all x 2 VðGÞ. Then it is easy to check that

g is a k-coloring of the subgraph H½X1 [ � � � [ Xiþ1� � e. Clearly, g can be

extended to some k-coloring of H � e.

Case 3. e ¼ prðaÞz. Since G is k-critical, there is a k-coloring f of G ¼ H½X1�
such that f ðxÞ ¼ k only for x ¼ a. Now, color each vertex piðxÞ with f ðxÞ
and color the vertex z with the new color k. This results in a k-coloring of

H � e. &

As a consequence of Lemma 3.3 and Theorem 1.1, we obtain the following

result.

Theorem 3.2. Every graph G 2 Mk with k � 3 is k-critical.

STRONGLY INDEPENDENT COLOR-CLASSES 9



4. GRAPHS HK
‘‘

For fixed integer ‘ � 1, we recursively define a sequence of graphs H‘
k for

k ¼ 2; 3; . . . as follows. For k ¼ 2, we let H‘
2 ¼ K2 (independently of ‘). For

k � 3, we define H‘
k ¼ M3‘þ1ðH‘

k�1Þ.
For X � VðGÞ and an integer j � 0, we will let N

j
GðXÞ denote the jth distance

class from X in G, i.e., the set of those v 2 VðGÞ such that G contains some path

of length j from v to a vertex in X, but no shorter path of this type. Note that

N0
GðXÞ ¼ X.

Let k; ‘ be integers with k � 2 and ‘ � 1. Let S‘k denote the class of all graphs

G that have a k-coloring c ¼ fX1; . . . ;Xkg such that N
j
GðXiÞ is independent in G

for each i 2 f1; . . . ; kg and j 2 f1; . . . ; ‘g.

Theorem 4.1. For every k � 2 and ‘ � 1, the graph H‘
k is k-chromatic and

belongs to S‘k.

Proof. It follows directly from the construction and using Theorem 1.1 that

H‘
k is k-chromatic. Note that H‘

2 ¼ K2 and H‘
3 ¼ C6‘þ3.

It remains to prove the existence of a k-coloring c ¼ fX1;X2; . . . ;Xkg of H‘
k

with the required property. For this, we use induction on k � 2. Since H‘
2 ¼ K2,

the statement is trivial when k ¼ 2.

Now, assume that k � 3. Then H‘
k ¼ M3‘þ1ðH‘

k�1Þ and, by induction, there

exists a ðk � 1Þ-coloring c ¼ fX0
1;X0

2; . . . ;X
0
k�1g of H‘

k�1 such that N
j

H‘
k�1

ðX0
iÞ is

independent in H‘
k�1 for all i; j with 1 � i � k � 1 and 1 � j � ‘.

From the construction of M3‘þ1ðH‘
k�1Þ, there is, in particular, a partition V0 [

V1 [ . . .V3‘�1 [ V3‘ [ fzg of VðH‘
kÞ with V0 ¼ VðH‘

k�1Þ, and where Vt ¼ fvt ¼
ptðvÞjv 2 VðH‘

k�1Þg are independent sets, t ¼ 1; 2; . . . ; 3‘ (and pt is the bijection

of V0 to Vt). We define for i ¼ 1; 2; . . . ; k � 1,

Xi ¼ fvt j v 2 X0
i; t ¼ 0; 1; . . . ; ‘� 1; ‘; ‘þ 2; ‘þ 4; . . . ; 3‘� 2; 3‘g:

That each of these sets is independent in H‘
k follows from the construction of

MrðGÞ, where we use that each X0
i is independent in H‘

k�1. The final class Xk is

given by

Xk ¼ V‘þ1 [ V‘þ3 [ � � � [ V3‘�3 [ V3‘�1 [ fzg:

This is again an independent set in H‘
k, since it is, by the construction of MrðGÞ, a

union of independent sets no two of which are joined by an edge. Thus

c ¼ fX1;X2; . . . ;Xkg indeed defines a k-coloring of H‘
k.

For j ¼ 1; . . . ; ‘, we need to show that the jth distance class from each Xi is an

independent set in H‘
k, i ¼ 1; 2; . . . ; k. Suppose that this fails for some i � k � 1.

Then there are vertices us; vt 2 Xi and a walk W of odd length at most 2‘þ 1

from us to vt in H‘
k. Then W does not use the vertex z, since every walk in H‘

k

using z and having length at most 2‘þ 1 must use vertices from Xk alternately,

10 JOURNAL OF GRAPH THEORY



but W has odd length and no end in Xk. So by projecting W down to H‘
k�1, there

exists a walk W 0 of odd length at most 2‘þ 1 in H‘
k�1 between vertices u; v 2 X0

i ,

which is a contradiction to the induction hypothesis (possibly for a different color

class than X0
i in H‘

k�1 in the case when W 0 contains an odd circuit).

Finally, consider a walk in H‘
k which starts and ends in Xk. If it uses any vertex

from V0, then its length is at least 2‘þ 2, since the distance from V0 to Xk is ‘þ 1

in H‘
k. Since H‘

k � V0 is bipartite, this implies that the length of the walk is at least

2‘þ 3 if it is odd. Hence the jth distance classes from Xk are independent,

j ¼ 1; . . . ; ‘. &

As pointed out by one of the referees, there is also a homomorphism universal

graph G‘
k in S‘k. The vertices of G‘

k are the couples of the form ði;AÞ where i 2 ½k�
and A is a subset of ½k�‘ consisting of strings ðx1; . . . ; x‘Þ where x1 6¼ i and xj 6¼
xj�1 for j ¼ 2; . . . ; ‘ . The edges of G‘

k are the pairs ði;AÞ; ðj;BÞ such that for every

FIGURE 2. An embedding of H4 quadrangulating the real projective plane.
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ðx1; . . . ; x‘Þ 2 A; ðy1; . . . ; y‘Þ 2 B we have ðj; y1; . . . ; y‘�1Þ 2 A; ði; x1; . . . ; x‘�1Þ 2
B and xt 6¼ yt for t ¼ 1; . . . ; ‘.

5. CONCLUDING REMARKS

We will indicate a separate argument for proving that H4 and G4 are 4-chromatic

graphs. It is straightforward to show that H4 may be drawn as a quadrangulation

of the real projective plane, an embedding such that every face is bounded by a

4-circuit, see Figure 2. We observe that the subgraph H3 ¼ G3 of H4 corresponds

precisely to the horizontally drawn edges of Figure 2. Each vertex of H4 is

marked in this figure with the name of the vertex of G4 to which it is mapped by

the homomorphism ’ from H4 to G4, the existence of which is proved in

Theorem 2.2. Since ’ is a composition of homomorphisms, each of which maps

two opposite corners of a face to a single vertex and fixes all the remaining

FIGURE 3. An embedding of G4 quadrangulating the real projective plane.
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vertices, it follows that also G4 may be drawn as a quadrangulation of the real

projective plane. Figure 3 shows such a drawing of G4 in a more symmetric way

than obtained directly from Figure 2 by applying ’. Arguments due to Gallai [3],

later developed in a more explicit form by Youngs [16], show that any graph

which quadrangulates the projective plane is either bipartite or 4-chromatic.

Hence G4 is 4-chromatic, since G4 contains an odd circuit, namely G3 ¼ C9. By

the same reason also, H4 is 4-chromatic. This argument can be also used to show

that all graphs of the form MrðC2sþ1Þ (r; s � 2) are 4-chromatic.

For every r � 1, the graph Lr ¼ MrðC2rþ1Þ is a 4-critical graph with n ¼
rð2r þ 1Þ þ 1 vertices such that every odd circuit of Lr has length �2r þ 1 �ffiffiffiffiffi

2n
p

. This fact was first proved by Stiebitz [13] (see also [10]) and later

rediscovered, independently, by Ngoc and Tuza [8] and by Youngs [16]. That all

graphs of the family MrðC2sþ1Þ are 4-chromatic was also proved by Payan [9]

and, recently, by Tardif [14].
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