Discrete Mathematics 24 (1978) 221–223. © North-Holland Publishing Company

NOTE

A NOTE ON HYPERGRAPHS WITH THE HELLY-PROPERTY

A. GYÁRFÁS

Computer and Automation Institute, Hungarian Academy of Sciences, H-1502 Budapest, XI, Kende utca 13-17, HUNGARY.

Received 10 October 1977 Revised 23 May 1978

Let H be a hypergraph and t a natural number. The sets which can be written as the union of t different edges of H form a new hypergraph which is denoted by H^t . Let us suppose that H has the Helly property and we want to state something similar for H^t . We prove a conjecture of C. Berge and two negative results.

If $H = (V, \mathscr{C})$ is a finite simple hypergraph—the notions and notations of [1] are used throughout the paper—we define H^t as the hypergraph with vertex set Vand edges $\bigcup_{k=1}^{t} E_{i_k}$ where $E_{i_k} \in \mathscr{C}$, $i_{k_1} \neq i_{k_2}$ for $k_1 \neq k_2$. ($H^1 = H$ is obvious). In the present note some properties of the transversal number \mathscr{T} of H^t are investigated under the assumption that H has the Helly-property. (H has the Helly property if any pairwise intersecting set of edges has a non-empty intersection). The following theorem was a conjecture of Berge [2, p. 278]:

Theorem 1. If *H* has the Helly-property and any t+1 edges of H^t have a non-empty intersection, then $\mathcal{T}(H^t) \leq t$.

Theorem 1 is sharp in the following sense:

Theorem 2. For every $t \ge 2$, $u \ge 1$ there is a hypergraph H with the Helly property so that any t edges of H^t have a non-empty intersection and $\mathcal{T}(H^t) \ge u$.

It is natural to ask whether the partial hypergraphs of H^t have similar properties. The answer is negative:

Theorem 3. For every $t \ge 2$, $u \ge 1$, $k \ge 1$ there is a hypergraph H with the Helly-property and a H' partial hypergraph of H^t so that any k edges of H' have a non-empty intersection and $\mathcal{T}(H') \ge u$.

In the proofs we use the notion of the representative graph: a graph G is a representative graph (or line-graph) of a hypergraph H if V(G) represents the

A. Gyárfás

edges of H and $x, y \in V(G)$ are connected by an edge if and only if the corresponding edges in H have a non-empty intersection. The representative graph of H is denoted by L(H). We need the following simple proposition:

Proposition 1. For every finite graph G there is a hypergraph H with the Hellyproperty so that L(H) is isomorphic to G.

Proof. The dual of the hypergraph of the maximal cliques of G satisfies the requirement.

Proof of Theorem 1. Suppose that H has the Helly-property. G will denote the complement of the graph L(H). We consider the set

$$A = \{x : x \in V(G), d(x) \ge t\}$$

where d(x) denotes the degree of vertex x. We prove that |A| < t. Suppose on the contrary that $|A| \ge t$ —in that case we can choose different vertices x_1, x_2, \ldots, x_t from V(G) so that $d(x_i) \ge t$ for $i = 1, 2, \ldots, t$. The set $Y_i \subset V(G)$ is defined for $i = 1, 2, \ldots, t$ so that $|Y_i| = t$ and $(y, x_i) \in E(G)$ for $y \in Y_i$. We define $Y_0 = \{x_1, x_2, \ldots, x_t\}$ and we consider the edges $E_i = \bigcup_{y \in Y_i} y$ for $i = 0, 1, \ldots, t$ of H^t . (Here y denotes the edge of H corresponding to the vertex y in L(H)). It is easy to check that $\bigcap_{i=0}^{t} E_i = \emptyset$ which is a contradiction. We proved therefore that |A| < t which indicates $\chi(G) \le t$ according to a theorem of Tomescu [1, p. 431]. $\chi(G) \le t$ means that the vertices of L(H) can be covered with at most t complete graphs and from that $\mathcal{T}(H) \le t$ because H has the Helly-property. $\mathcal{T}(H) \le t$ indicates $\mathcal{T}(H') \le t$.

Proof of Theorem 2. Let G be a graph without cycles of length $\ge t^2$ and $\chi(G) \ge u+t$. The existence of such a graph follows from [3]. Let H be a hypergraph with the Helly-property so that L(H) and the complement of G are isomorphic. H exists by Proposition 1. It is clear that $\mathcal{T}(H) \ge u+t$.

First we prove that $\mathcal{T}(H^t) \ge u$. If $\mathcal{T}(H^t) < u$, then there exists a transversal of at most u-1 elements in H^t which means that at most t-1 edges of H are disjoint from that transversal i.e. $\mathcal{T}(H) < u + t - 1$ —contradiction.

Now we show that any t edges of H^t have a non-empty intersection. Let

$$E'_1 = \bigcup_{j=1}^{t} E_{1j}, E'_2 = \bigcup_{j=1}^{t} E_{2j}, \dots, E'_t = \bigcup_{j=1}^{t} E_{1j}$$

be t edges of H^i $(E_{ij} \in \mathcal{E}(H)$ for $1 \le i, j \le t$). y_{ij} denotes the vertex in L(H) which corresponds to E_{ij} . The complement of the subgraph in L(H) spanned by $Y = \{y_{ij} : 1 \le i, j \le t\}$ contains no cycles because $|Y| \le t^2$. Therefore we can order Y so that for any $y \in Y$ there is at most one $y' \in Y$ for which y < y' and

222

 $(y, y') \notin \mathscr{E}(L(H))$. We choose vertices from Y consecutively by the following algorithm:

Step 1: $Y' = \emptyset$.

Step 2: If there is a $y_{ij} \in Y - Y'$ so that y_{ij} is connected with every vertex of Y' and $y_{kl} \in Y'$ implies $i \neq k$, then the smallest y_{ij} —in the ordering defined above—is added to Y' and we repeat Step 2. If we can not choose y_{ij} , we stop.

We prove that Y' contains a vertex y_{ij_i} for every $1 \le i \le t$. Suppose, on the contrary that there is one index i_0 so that the (distinct) vertices $y_{i_01}, y_{i_02}, \ldots, y_{i_0t}$ are not in Y'. For every k, y_{i_0k} there is a $y \in Y'$ so that $y < y_{i_0k}$ and the edge (y, y_{i_0k}) is not in L(H) otherwise the algorithm would have added y_{i_0k} at some step to Y'. |Y'| < t therefore there exists k_1, k_2 and $y \in Y'$ so that $(y, y_{i_0k_1})$ and $(y, y_{i_0k_2})$ are not edges of L(H) and $y < y_{i_0k_1}, y < y_{i_0k_2}$ which contradicts the ordering of Y.

We conclude that Y' represents every edge E'_i —on the other hand Y' defines a complete graph which shows that the edges of H corresponding to Y' have a non-empty intersection. That means $\bigcap_{i=1}^{t} E'_i \neq \emptyset$.

Proof of Theorem 3. The graph G is defined as follows: Let G_1 be a graph for which $\chi(G_1) \ge 2u$ and without cycles of length $\le k$. The vertices of G are placed in a matrix M which has t rows and $|V(G_1)|$ columns. The edges of G are defined by the first two rows of M: \overline{G}_1 is placed in the first and second row of M so that the vertices in the same column correspond to each other in an isomorphism. All edges between the first and second row of M are added to G. The hypergraph H is defined according to Proposition 1 so that L(H) is isomorphic to G. $H' \subset H^t$ is defined as the unions of edges corresponding to the columns of G. It is easy to see that H' has the properties required in Theorem 3.

References

- [1] C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1973).
- [2] C. Berge and D. Ray-Chaudhuri, eds., Hypergraph Seminar, Lecture notes in Mathematics, Vol. 411 (Springer-Verlag, Berlin).
- [3] P. Erdös and A. Hajnal, On chromatic number of graphs and set systems, Acta math. Acad. Sci. Hung. 17 (1966) 61–99.