Functional Analysis, BSM, Spring 2012

Homework set, Week 1

1. What is the set of eigenvalues for the left shift operator

$$L: (\alpha_1, \alpha_2, \alpha_3, \ldots) \mapsto (\alpha_2, \alpha_3, \alpha_4, \ldots)$$

a) as a C^N → C^N operator;
b) as an l_∞ → l_∞ operator;
c) as an l_p → l_p operator?
2. Let

 $C^{\infty}[0,1] = \{f: [0,1] \to \mathbb{R} : f \text{ is infinitely differentiable}\}\$

and D denote the differentiation operator on $C^{\infty}[0,1]$:

$$Df = f'$$
 for all $f \in C^{\infty}[0, 1]$.

Determine the kernel ker D, the range ran D and the set of eigenvalues for D.

3. W1P1. (5 points) Prove that if $(\alpha_1, \alpha_2, \ldots) \in \ell_2$ and $(\beta_1, \beta_2, \ldots) \in \ell_2$, then $(\alpha_1 + \beta_1, \alpha_2 + \beta_2, \ldots) \in \ell_2$. **4.** W1P2. (10 points) Show an operator (linear transformation) $T : \ell_{\infty} \to \ell_{\infty}$ such that the set of eigenvalues for T is $\{\lambda \in \mathbb{C} : |\lambda| = 1\}$.

5. W1P3. (8 points) Consider C[0, 1], the set of continuous real functions on [0, 1], with the metric

$$d(f,g) = \int_0^1 |f(x) - g(x)| \, \mathrm{d}x.$$

Show that (C[0, 1], d) is not complete.

6. W1P4. (10 points) Let (X, d) be a metric space. Suppose that $x_1, x_2, \ldots \in X$ and $y_1, y_2, \ldots \in X$ are Cauchy sequences. Set $a_n = d(x_n, y_n)$. Prove that $a_1, a_2, \ldots \in \mathbb{R}$ is a Cauchy sequence. (Since \mathbb{R} is complete, this means that the sequence (a_n) is convergent.)

7. W1P5. (10 points) Consider the set of infinite 0-1 sequences

$$X = \{(a_1, a_2, \ldots) : a_i \in \{0, 1\}\}$$

with the following metric:

$$d((a_1, a_2, \ldots), (b_1, b_2, \ldots)) = 1/k,$$

where k is the smallest positive integer for which $a_k \neq b_k$. (If there is no such k, that is, $a_i = b_i$ for each i, then the two sequences are the same. In that case, let their distance be 0.) Prove that (X, d) is a complete metric space.

8. W2P1. (5 points) Let $(X_1, \|\cdot\|_1)$; $(X_2, \|\cdot\|_2)$; $(X_3, \|\cdot\|_3)$ be normed spaces and $T \in B(X_1, X_2)$; $S \in B(X_2, X_3)$ bounded operators. Prove that

$$||ST||_{1,3} \le ||S||_{2,3} ||T||_{1,2}.$$

Solutions can be found on: www.renyi.hu/~harangi/bsm/