Functional Analysis, BSM, Spring 2012

Homework set, Week 1

1. What is the set of eigenvalues for the left shift operator

$$
L:\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right) \mapsto\left(\alpha_{2}, \alpha_{3}, \alpha_{4}, \ldots\right)
$$

a) as a $\mathbb{C}^{\mathbb{N}} \rightarrow \mathbb{C}^{\mathbb{N}}$ operator;
b) as an $\ell_{\infty} \rightarrow \ell_{\infty}$ operator;
c) as an $\ell_{p} \rightarrow \ell_{p}$ operator?
2. Let

$$
C^{\infty}[0,1]=\{f:[0,1] \rightarrow \mathbb{R}: f \text { is infinitely differentiable }\}
$$

and D denote the differentiation operator on $C^{\infty}[0,1]$:

$$
D f=f^{\prime} \text { for all } f \in C^{\infty}[0,1] .
$$

Determine the kernel ker D, the range ran D and the set of eigenvalues for D.
3. W1P1. (5 points) Prove that if $\left(\alpha_{1}, \alpha_{2}, \ldots\right) \in \ell_{2}$ and $\left(\beta_{1}, \beta_{2}, \ldots\right) \in \ell_{2}$, then $\left(\alpha_{1}+\beta_{1}, \alpha_{2}+\beta_{2}, \ldots\right) \in \ell_{2}$.
4. W1P2. (10 points) Show an operator (linear transformation) $T: \ell_{\infty} \rightarrow \ell_{\infty}$ such that the set of eigenvalues for T is $\{\lambda \in \mathbb{C}:|\lambda|=1\}$.
5. W1P3. (8 points) Consider $C[0,1]$, the set of continuous real functions on $[0,1]$, with the metric

$$
d(f, g)=\int_{0}^{1}|f(x)-g(x)| \mathrm{d} x .
$$

Show that $(C[0,1], d)$ is not complete.
6. W1P4. (10 points) Let (X, d) be a metric space. Suppose that $x_{1}, x_{2}, \ldots \in X$ and $y_{1}, y_{2}, \ldots \in X$ are Cauchy sequences. Set $a_{n}=d\left(x_{n}, y_{n}\right)$. Prove that $a_{1}, a_{2}, \ldots \in \mathbb{R}$ is a Cauchy sequence. (Since \mathbb{R} is complete, this means that the sequence (a_{n}) is convergent.)
7. W1P5. (10 points) Consider the set of infinite $0-1$ sequences

$$
X=\left\{\left(a_{1}, a_{2}, \ldots\right): a_{i} \in\{0,1\}\right\}
$$

with the following metric:

$$
d\left(\left(a_{1}, a_{2}, \ldots\right),\left(b_{1}, b_{2}, \ldots\right)\right)=1 / k
$$

where k is the smallest positive integer for which $a_{k} \neq b_{k}$. (If there is no such k, that is, $a_{i}=b_{i}$ for each i, then the two sequences are the same. In that case, let their distance be 0 .) Prove that (X, d) is a complete metric space.
8. W2P1. (5 points) Let $\left(X_{1},\|\cdot\|_{1}\right) ;\left(X_{2},\|\cdot\|_{2}\right) ;\left(X_{3},\|\cdot\|_{3}\right)$ be normed spaces and $T \in B\left(X_{1}, X_{2}\right) ; S \in$ $B\left(X_{2}, X_{3}\right)$ bounded operators. Prove that

$$
\|S T\|_{1,3} \leq\|S\|_{2,3}\|T\|_{1,2} .
$$

Solutions can be found on: www.renyi.hu/~harangi/bsm/

