Functional Analysis, BSM, Spring 2012

Homework set, Week 1

Solutions

1. If $L x=\lambda x$ for some nonzero $x=\left(\alpha_{1}, \alpha_{2}, \ldots\right)$, then we have $x=\left(\alpha_{1}, \lambda \alpha_{1}, \lambda^{2} \alpha_{1}, \lambda^{3} \alpha_{1}, \ldots\right)$ with $\alpha_{1} \neq 0$. So we need to determine the set of those λ for which $\left(1, \lambda, \lambda^{2}, \lambda^{3}, \ldots\right)$ is in the given spaces $\mathbb{C}^{\mathbb{N}}, \ell_{\infty}$ and ℓ_{p} :
a) \mathbb{C};
b) $\{\lambda \in \mathbb{C}:|\lambda| \leq 1\}$;
c) $\{\lambda \in \mathbb{C}:|\lambda|<1\}$.
2. Clearly, the kernel is the set of constant functions and the range is the whole space $C^{\infty}[0,1]$. The set of eigenvalues is \mathbb{R}, since for any $\lambda \in \mathbb{R}$ the function $f(x)=e^{\lambda x}$ is an eigenvector with eigenvalue λ :

$$
(D f)(x)=f^{\prime}(x)=\lambda e^{\lambda x}=\lambda f(x)
$$

3. Our assumption is that

$$
\sum_{i=1}^{\infty}\left|\alpha_{i}\right|^{2}<\infty \text { and } \sum_{i=1}^{\infty}\left|\beta_{i}\right|^{2}<\infty
$$

we need to prove that

$$
\sum_{i=1}^{\infty}\left|\alpha_{i}+\beta_{i}\right|^{2}<\infty
$$

Using the triangle inequality and the fact that $2 a b \leq a^{2}+b^{2}$ for nonnegative reals a, b :

$$
\left|\alpha_{i}+\beta_{i}\right|^{2} \leq\left(\left|\alpha_{i}\right|+\left|\beta_{i}\right|\right)^{2}=\left|\alpha_{i}\right|^{2}+\left|\beta_{i}\right|^{2}+2\left|\alpha_{i}\right|\left|\beta_{i}\right| \leq 2\left|\alpha_{i}\right|^{2}+2\left|\beta_{i}\right|^{2}
$$

It follows that

$$
\sum_{i=1}^{\infty}\left|\alpha_{i}+\beta_{i}\right|^{2} \leq 2 \sum_{i=1}^{\infty}\left|\alpha_{i}\right|^{2}+2 \sum_{i=1}^{\infty}\left|\beta_{i}\right|^{2}<\infty
$$

One can prove the same statement for any $\ell_{p}, p \geq 1$ space instead of ℓ_{2}. For nonnegative real numbers a and b it holds that

$$
\sqrt[p]{\frac{a^{p}+b^{p}}{2}} \geq \frac{a+b}{2}
$$

This implies that $(a+b)^{p} \leq 2^{p-1}\left(a^{p}+b^{p}\right)$. Consequently,

$$
\sum_{i=1}^{\infty}\left|\alpha_{i}+\beta_{i}\right|^{p} \leq \sum_{i=1}^{\infty}\left(\left|\alpha_{i}\right|+\left|\beta_{i}\right|\right)^{p} \leq 2^{p-1} \sum_{i=1}^{\infty}\left|\alpha_{i}\right|^{p}+2^{p-1} \sum_{i=1}^{\infty}\left|\beta_{i}\right|^{p}<\infty
$$

4. Consider the map T that takes

$$
\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}, \alpha_{7}, \alpha_{8}, \alpha_{9}, \ldots\right)
$$

to

$$
\left(\alpha_{3}, \alpha_{1}, \alpha_{5}, \alpha_{2}, \alpha_{7}, \alpha_{4}, \alpha_{9}, \alpha_{6}, \alpha_{11}, \ldots\right)
$$

It is not hard to check that T is a linear transformation from ℓ_{∞} to itself. Clearly, 0 is not an eigenvalue for T. Suppose that some $\lambda \neq 0$ is an eigenvalue. The corresponding eigenvector must be

$$
\left(\alpha_{1}, \lambda^{-1} \alpha_{1}, \lambda^{1} \alpha_{1}, \lambda^{-2} \alpha_{1}, \lambda^{2} \alpha_{1}, \lambda^{-3} \alpha_{1}, \lambda^{3} \alpha_{1}, \ldots\right)
$$

for some $\alpha_{1} \in \mathbb{C} \backslash\{0\}$. If $|\lambda|<1$ or $|\lambda|>1$, then the above sequence is clearly not bounded. So in these cases none of the possible eigenvectors are in ℓ_{∞}. However, if $|\lambda|=1$, then the above sequence is bounded and it is indeed an eigenvector for T with eigenvalue λ.
5. Let

$$
f_{n}(x)= \begin{cases}0 & \text { if } 0 \leq x \leq 1 / 2-1 /(4 n) \\ 2 n x-n+1 / 2 & \text { if } 1 / 2-1 /(4 n)<x<1 / 2+1 /(4 n) \\ 1 & \text { if } 1 / 2+1 /(4 n) \leq x \leq 1\end{cases}
$$

It is easy to check that $\left(f_{n}\right)$ is a Cauchy sequence in $(C[0,1], d)$. However, it is not convergent. A heuristic proof: the sequence should converge to the function

$$
f(x)= \begin{cases}0 & \text { if } 0 \leq x \leq 1 / 2 \\ 1 & \text { if } 1 / 2<x \leq 1\end{cases}
$$

but this is not a continuous function.
A rigorous proof: suppose that $\left(f_{n}\right)$ converges to a continuous function f. We distinguish two cases. First, assume that $f(1 / 2) \geq 1 / 2$. Since f is continuous at $x=1 / 2$, there exists a $\delta>0$ such that $f(x) \geq 1 / 4$ for $x \in[1 / 2-\delta, 1 / 2+\delta]$. It follows that $\left|f_{n}(x)-f(x)\right|=|f(x)| \geq 1 / 4$ for $x \in[1 / 2-\delta, 1 / 2-1 /(4 n)]$. Then

$$
d\left(f_{n}, f\right)=\int_{0}^{1}\left|f_{n}(x)-f(x)\right| \mathrm{d} x \geq \int_{1 / 2-\delta}^{1 / 2-1 /(4 n)}\left|f_{n}(x)-f(x)\right| \mathrm{d} x \geq\left(\delta-\frac{1}{4 n}\right) \frac{1}{4}
$$

which does not tend to 0 as $n \rightarrow \infty$.
If $f(1 / 2) \leq 1 / 2$, then there exists a $\delta>0$ such that $f(x) \leq 3 / 4$ for $x \in[1 / 2-\delta, 1 / 2+\delta]$. It implies that $\left|f_{n}(x)-f(x)\right|=|1-f(x)| \geq 1 / 4$ for $x \in[1 / 2+1 /(4 n), 1 / 2+\delta]$. It follows (similarly as in the first case) that $d\left(f_{n}, f\right) \nrightarrow 0$.
6.

$$
\begin{aligned}
& \left|a_{n}-a_{m}\right|=\left|d\left(x_{n}, y_{n}\right)-d\left(x_{m}, y_{m}\right)\right|=\left|d\left(x_{n}, y_{n}\right)-d\left(x_{n}, y_{m}\right)+d\left(x_{n}, y_{m}\right)-d\left(x_{m}, y_{m}\right)\right| \leq \\
& \\
& \left|d\left(x_{n}, y_{n}\right)-d\left(x_{n}, y_{m}\right)\right|+\left|d\left(x_{n}, y_{m}\right)-d\left(x_{m}, y_{m}\right)\right| \leq d\left(y_{n}, y_{m}\right)+d\left(x_{n}, x_{m}\right)
\end{aligned}
$$

Let $\varepsilon>0$. Since $\left(x_{n}\right)$ is Cauchy, there is an N_{1} such that $d\left(x_{n}, x_{m}\right)<\varepsilon / 2$ for $n, m \geq N_{1}$. Similarly, there is an N_{2} such that $d\left(y_{n}, y_{m}\right)<\varepsilon / 2$ for $n, m \geq N_{2}$. Set $N=\max \left(N_{1}, N_{2}\right)$. Consequently, if $n, m \geq N$, then

$$
\left|a_{n}-a_{m}\right| \leq d\left(y_{n}, y_{m}\right)+d\left(x_{n}, x_{m}\right)<\varepsilon / 2+\varepsilon / 2=\varepsilon
$$

7. Suppose that $x_{1}, x_{2}, \ldots \in X$ is a Cauchy sequence. We need to prove that it is convergent. Let

$$
x_{n}=\left(a_{1}^{(n)}, a_{2}^{(n)}, a_{3}^{(n)}, \ldots\right)
$$

and $\varepsilon=1 / k$ for some fixed positive integer k. Since $\left(x_{n}\right)$ is Cauchy, there is an N such that $d\left(x_{n}, x_{m}\right)<\varepsilon=1 / k$ for $n, m \geq N$. It follows that for $n, m \geq N$ we have

$$
a_{1}^{(n)}=a_{1}^{(m)} ; a_{2}^{(n)}=a_{2}^{(m)} ; \ldots ; a_{k}^{(n)}=a_{k}^{(m)}
$$

In other words, the first k elements of the sequences x_{N}, x_{N+1}, \ldots are the same.
We showed that for any k, after a while $(n \geq N)$ the k-th elements are the same in all x_{n} 's. Let b_{k} denote this stabilized k-th element. Let y denote the $0-1$ sequence $\left(b_{1}, b_{2}, \ldots\right)$. It is clear that $x_{n} \xrightarrow{d} y$.
8. We need to prove that for arbitrary $x \in X_{1} \backslash\{0\}$:

$$
\frac{\|S T x\|_{3}}{\|x\|_{1}} \leq\|S\|_{2,3}\|T\|_{1,2}
$$

If $T x=0$, then $S T x=0$, and we are done. Otherwise:

$$
\frac{\|S T x\|_{3}}{\|x\|_{1}}=\frac{\|S T x\|_{3}}{\|T x\|_{2}} \cdot \frac{\|T x\|_{2}}{\|x\|_{1}} \leq\|S\|_{2,3}\|T\|_{1,2}
$$

