Functional Analysis, BSM, Spring 2012

Exercise sheet: infinite dimensional vector spaces

Solutions

1. We need to show that $\ker T$ is closed under addition and multiplication with scalars.

Assume that $v_1, v_2 \in \ker T$, that is, $Tv_1 = Tv_2 = 0$. Then $T(v_1 + v_2) = Tv_1 + Tv_2 = 0 + 0 = 0$, which means that $v_1 + v_2 \in \ker T$.

If $v \in \ker T$, then for any scalar $\alpha \in F$ we have $T(\alpha v) = \alpha T(v) = 0$

2. First we show that if T is injective, then ker $T = \{0\}$. Let v be any element in ker T. Then Tv = 0 = T0, and injectivity implies that v = 0.

In the other direction, assume that ker $T = \{0\}$. Suppose that for some $u, v \in V$ we have Tu = Tv. It follows that

$$T(u-v) = Tu - Tv = 0 \Rightarrow u - v \in \ker T = \{0\} \Rightarrow u - v = 0 \Rightarrow u = v$$

3. The kernel is

$$\{(\alpha_1, 0, 0, 0, \ldots) : \alpha_1 \in \mathbb{C}\},\$$

which is a one-dimensional linear subspace.

4. It is easy to check that $\ker(S \circ T) \supset \ker T$. Since $\ker \operatorname{id} = \{0\}$ and $\ker T \supsetneq \{0\}$, we get that $S \circ T$ cannot be the identity operator for any S.

5. The so-called right shift operator clearly has this property:

$$(\alpha_1, \alpha_2, \alpha_3, \ldots) \mapsto (0, \alpha_1, \alpha_2, \alpha_3, \ldots).$$

6. Let L be an arbitrary linear functional on ℓ_{∞} (i.e., an operator $L: \ell_{\infty} \to \mathbb{C}$). Then the operator

$$(\alpha_1, \alpha_2, \alpha_3, \ldots) \mapsto (L(\alpha_1, \alpha_2, \alpha_3, \ldots), \alpha_1, \alpha_2, \alpha_3, \ldots)$$

satisfies $T \circ S = id$. We will denote this operator by S_L . In fact, these are all the operators with the desired property.

Remark: What are the linear functionals on ℓ_{∞} ? Of course, L can be any finite linear combination of the α_i 's such as

$$L(\alpha_1, \alpha_2, \alpha_3, \ldots) = 3\alpha_4 - 5\alpha_7.$$

Some infinite linear combinations also give us linear functionals: let $(\beta_1, \beta_2, \ldots) \in \ell_1$ and set

$$L(\alpha_1, \alpha_2, \alpha_3, \ldots) = \sum_{i=1}^{\infty} \beta_i \alpha_i.$$

Actually, one can arbitrarily define L on a basis of ℓ_{∞} ; any such function can be uniquely extended to a linear functional on ℓ_{∞} .

7. $\{0\} \subset \ker T \subset \ker(T \circ S) = \ker \operatorname{id} = \{0\}$. So $\ker T = \{0\}$, which is equivalent to injectivity.

8. Since T is injective, 0 cannot be an eigenvalue. Suppose that $v = (\alpha_1, \alpha_2, ...)$ is an eigenvector for S_L with eigenvalue $\lambda \neq 0$. We get that

$$v = (\alpha_1, \alpha_1 \lambda^{-1}, \alpha_1 \lambda^{-2}, \alpha_1 \lambda^{-3}, \ldots).$$

We can assume that $\alpha_1 = 1$. Then v is an eigenvector if and only if

$$L(1,\lambda^{-1},\lambda^{-2},\lambda^{-3},\ldots)=\lambda.$$

So the eigenvalues for S_L are exactly those λ 's that satisfy the above equation and for which $|\lambda| \ge 1$. (We need $|\lambda| \ge 1$, because otherwise the vector v would not be in ℓ_{∞} .)

a) L = 0; so $S_L : (\alpha_1, \alpha_2, \alpha_3, \ldots) \mapsto (0, \alpha_1, \alpha_2, \alpha_3, \ldots).$

b) There is no such S, because for $0 < |\lambda| < 1$ the above v is not in ℓ_{∞} .

c) $L(\alpha_1, \alpha_2, \ldots;) = \alpha_1$; so $S_L: (\alpha_1, \alpha_2, \alpha_3, \ldots) \mapsto (\alpha_1, \alpha_1, \alpha_2, \alpha_3, \ldots)$. The only eigenvalue is 1.

d-e) $L(\alpha_1, \alpha_2, \ldots;) = \alpha_{1000}$; so $S_L: (\alpha_1, \alpha_2, \alpha_3, \ldots) \mapsto (\alpha_{1000}, \alpha_1, \alpha_2, \alpha_3, \ldots)$, and our equation transforms to

$$\lambda^{-999} = \lambda \Leftrightarrow \lambda^{1000} = 1,$$

which has a thousand different complex roots (with absolute value 1).

f)* Surprisingly, L can be chosen in such a way that all the possible λ 's (those with $|\lambda| \ge 1$) are eigenvalues. The reason for this is that the vectors

$$(1, \lambda^{-1}, \lambda^{-2}, \lambda^{-3}, \ldots)$$

are linearly independent in ℓ_{∞} as λ runs through $\mathbb{C} \setminus \{0\}$. Consequently, we can define L for each of these vectors independently, and it can be extended to a linear functional over ℓ_{∞} . So there exists a linear functional L with $L(1, \lambda^{-1}, \lambda^{-2}, \lambda^{-3}, \ldots) = \lambda$ for each $\lambda \neq 0$. It follows that the set of eigenvalues for S_L is $\{\lambda : |\lambda| \geq 1\}$.

To prove that these vectors are linearly independent, it suffices to show that any finite collection of them is independent. Let k be a positive integer, and suppose that $\lambda_1, \ldots, \lambda_k$ are distinct nonzero complex numbers. It is enough to consider the first k coordinates: the vectors $(1, \lambda_i^{-1}, \ldots, \lambda_i^{-(k-1)})$; $i = 1, \ldots, k$ are already linearly independent, because the determinant of the corresponding matrix, which is a Vandermonde determinant, is nonzero.

9.
$$T_g \circ T_h = T_{gh}$$
.

10-13. Let h be a fixed continuous function on [0, 1] and let λ be any real number. We will give a necessary and sufficient condition for λ being an eigenvalue for T_h . Suppose that for some $f \in C[0, 1]\{0\}$ we have

$$h(x)f(x) = \lambda f(x)$$
 for every $x \in [0,1] \Leftrightarrow (h(x) - \lambda) f(x) = 0$ for every $x \in [0,1]$.

Let $A = \{x \in [0,1] : h(x) = \lambda\}$. The above equation says that f must be zero everywhere on $[0,1] \setminus A$. Since f is continuous, it follows that f must be zero in the closure of this set. However, the closure of this set is [0,1] except when A contains an interval. Consequently, λ is an eigenvalue for T_h if and only if h(x) = 0 for every point x of an interval $I \subset [0,1]$.

10. The kernel is trivial if and only if 0 is not an eigenvalue. For $\lambda = 0$: if h(x) = x + 1, then $A = \emptyset$; if h(x) = x - 1/2, then $A = \{1/2\}$. Neither of them contains an interval, so 0 is not an eigenvalue in either case. **11.** If $h \equiv 0$, then ker $T_h = C[0, 1]$. Another example:

$$h(x) = \begin{cases} 0 & \text{if } 0 \le x \le 1/2\\ x - 1/2 & \text{if } 1/2 < x \le 1 \end{cases}$$

Then:

$$\ker T_h = \{ f \in C[0,1] : f(x) = 0 \text{ for } 1/2 \le x \le 1 \}$$

12. Let h be constant λ_1 on an interval and some other constant λ_2 on an other interval, for example:

$$h(x) = \begin{cases} 0 & \text{if } 0 \le x \le 1/3\\ x - 1/3 & \text{if } 1/3 < x \le 2/3\\ 1/3 & \text{if } 2/3 < x \le 1 \end{cases}$$

13. We need to construct a continuous function on [0, 1] such that there are distinct real numbers $\lambda_1, \lambda_2, \ldots$ and disjoint intervals $I_1, I_2, \ldots \subset [0, 1]$ in such a way that h is equal to λ_k on I_k . Set

$$I_k = \left[\frac{1}{2k}, \frac{1}{2k-1}\right]$$
 and $\lambda_k = \frac{1}{k}$.

Set h(0) = 0 and extend h linearly between I_k and I_{k+1} . It is not hard to prove that h is a continuous function such that the eigenvalues for T_h are 1/k; $k \in \mathbb{N}$.

However, there is no $h \in C[0, 1]$ such that the set of eigenvalues for T_h is uncountable.