Functional Analysis, BSM, Spring 2012

Exercise sheet: infinite dimensional vector spaces

Solutions

1. We need to show that $\operatorname{ker} T$ is closed under addition and multiplication with scalars.

Assume that $v_{1}, v_{2} \in \operatorname{ker} T$, that is, $T v_{1}=T v_{2}=0$. Then $T\left(v_{1}+v_{2}\right)=T v_{1}+T v_{2}=0+0=0$, which means that $v_{1}+v_{2} \in \operatorname{ker} T$.

If $v \in \operatorname{ker} T$, then for any scalar $\alpha \in F$ we have $T(\alpha v)=\alpha T(v)=0$
2. First we show that if T is injective, then $\operatorname{ker} T=\{0\}$. Let v be any element in ker T. Then $T v=0=T 0$, and injectivity implies that $v=0$.

In the other direction, assume that $\operatorname{ker} T=\{0\}$. Suppose that for some $u, v \in V$ we have $T u=T v$. It follows that

$$
T(u-v)=T u-T v=0 \Rightarrow u-v \in \operatorname{ker} T=\{0\} \Rightarrow u-v=0 \Rightarrow u=v
$$

3. The kernel is

$$
\left\{\left(\alpha_{1}, 0,0,0, \ldots\right): \alpha_{1} \in \mathbb{C}\right\}
$$

which is a one-dimensional linear subspace.
4. It is easy to check that $\operatorname{ker}(S \circ T) \supset \operatorname{ker} T$. Since $\operatorname{ker} \mathrm{id}=\{0\}$ and $\operatorname{ker} T \supsetneq\{0\}$, we get that $S \circ T$ cannot be the identity operator for any S.
5. The so-called right shift operator clearly has this property:

$$
\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right) \mapsto\left(0, \alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right) .
$$

6. Let L be an arbitrary linear functional on ℓ_{∞} (i.e., an operator $L: \ell_{\infty} \rightarrow \mathbb{C}$). Then the operator

$$
\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right) \mapsto\left(L\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right), \alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right)
$$

satisfies $T \circ S=\mathrm{id}$. We will denote this operator by S_{L}. In fact, these are all the operators with the desired property.
Remark: What are the linear functionals on ℓ_{∞} ? Of course, L can be any finite linear combination of the α_{i} 's such as

$$
L\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right)=3 \alpha_{4}-5 \alpha_{7}
$$

Some infinite linear combinations also give us linear functionals: let $\left(\beta_{1}, \beta_{2}, \ldots\right) \in \ell_{1}$ and set

$$
L\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right)=\sum_{i=1}^{\infty} \beta_{i} \alpha_{i}
$$

Actually, one can arbitrarily define L on a basis of ℓ_{∞}; any such function can be uniquely extended to a linear functional on ℓ_{∞}.
7. $\{0\} \subset \operatorname{ker} T \subset \operatorname{ker}(T \circ S)=\operatorname{kerid}=\{0\}$. So $\operatorname{ker} T=\{0\}$, which is equivalent to injectivity.
8. Since T is injective, 0 cannot be an eigenvalue. Suppose that $v=\left(\alpha_{1}, \alpha_{2}, \ldots\right)$ is an eigenvector for S_{L} with eigenvalue $\lambda \neq 0$. We get that

$$
v=\left(\alpha_{1}, \alpha_{1} \lambda^{-1}, \alpha_{1} \lambda^{-2}, \alpha_{1} \lambda^{-3}, \ldots\right)
$$

We can assume that $\alpha_{1}=1$. Then v is an eigenvector if and only if

$$
L\left(1, \lambda^{-1}, \lambda^{-2}, \lambda^{-3}, \ldots\right)=\lambda
$$

So the eigenvalues for S_{L} are exactly those λ 's that satisfy the above equation and for which $|\lambda| \geq 1$. (We need $|\lambda| \geq 1$, because otherwise the vector v would not be in ℓ_{∞}.)
a) $\mathrm{L}=0$; so $S_{L}:\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right) \mapsto\left(0, \alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right)$.
b) There is no such S, because for $0<|\lambda|<1$ the above v is not in ℓ_{∞}.
c) $L\left(\alpha_{1}, \alpha_{2}, \ldots ;\right)=\alpha_{1}$; so $S_{L}:\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right) \mapsto\left(\alpha_{1}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right)$. The only eigenvalue is 1 .
d-e) $L\left(\alpha_{1}, \alpha_{2}, \ldots ;\right)=\alpha_{1000}$; so $S_{L}:\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right) \mapsto\left(\alpha_{1000}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right)$, and our equation transforms to

$$
\lambda^{-999}=\lambda \Leftrightarrow \lambda^{1000}=1,
$$

which has a thousand different complex roots (with absolute value 1).
f)* Surprisingly, L can be chosen in such a way that all the possible λ 's (those with $|\lambda| \geq 1$) are eigenvalues. The reason for this is that the vectors

$$
\left(1, \lambda^{-1}, \lambda^{-2}, \lambda^{-3}, \ldots\right)
$$

are linearly independent in ℓ_{∞} as λ runs through $\mathbb{C} \backslash\{0\}$. Consequently, we can define L for each of these vectors independently, and it can be extended to a linear functional over ℓ_{∞}. So there exists a linear functional L with $L\left(1, \lambda^{-1}, \lambda^{-2}, \lambda^{-3}, \ldots\right)=\lambda$ for each $\lambda \neq 0$. It follows that the set of eigenvalues for S_{L} is $\{\lambda:|\lambda| \geq 1\}$.

To prove that these vectors are linearly independent, it suffices to show that any finite collection of them is independent. Let k be a positive integer, and suppose that $\lambda_{1}, \ldots, \lambda_{k}$ are distinct nonzero complex numbers. It is enough to consider the first k coordinates: the vectors $\left(1, \lambda_{i}^{-1}, \ldots, \lambda_{i}^{-(k-1)}\right) ; i=1, \ldots, k$ are already linearly independent, because the determinant of the corresponding matrix, which is a Vandermonde determinant, is nonzero.
9. $T_{g} \circ T_{h}=T_{g h}$.

10-13. Let h be a fixed continuous function on $[0,1]$ and let λ be any real number. We will give a necessary and sufficient condition for λ being an eigenvalue for T_{h}. Suppose that for some $f \in C[0,1]\{0\}$ we have

$$
h(x) f(x)=\lambda f(x) \text { for every } x \in[0,1] \Leftrightarrow(h(x)-\lambda) f(x)=0 \text { for every } x \in[0,1] .
$$

Let $A=\{x \in[0,1]: h(x)=\lambda\}$. The above equation says that f must be zero everywhere on $[0,1] \backslash A$. Since f is continuous, it follows that f must be zero in the closure of this set. However, the closure of this set is $[0,1]$ except when A contains an interval. Consequently, λ is an eigenvalue for T_{h} if and only if $h(x)=0$ for every point x of an interval $I \subset[0,1]$.
10. The kernel is trivial if and only if 0 is not an eigenvalue. For $\lambda=0$: if $h(x)=x+1$, then $A=\emptyset$; if $h(x)=x-1 / 2$, then $A=\{1 / 2\}$. Neither of them contains an interval, so 0 is not an eigenvalue in either case.
11. If $h \equiv 0$, then $\operatorname{ker} T_{h}=C[0,1]$. Another example:

$$
h(x)= \begin{cases}0 & \text { if } 0 \leq x \leq 1 / 2 \\ x-1 / 2 & \text { if } 1 / 2<x \leq 1\end{cases}
$$

Then:

$$
\operatorname{ker} T_{h}=\{f \in C[0,1]: f(x)=0 \text { for } 1 / 2 \leq x \leq 1\}
$$

12. Let h be constant λ_{1} on an interval and some other constant λ_{2} on an other interval, for example:

$$
h(x)= \begin{cases}0 & \text { if } 0 \leq x \leq 1 / 3 \\ x-1 / 3 & \text { if } 1 / 3<x \leq 2 / 3 \\ 1 / 3 & \text { if } 2 / 3<x \leq 1\end{cases}
$$

13. We need to construct a continuous function on $[0,1]$ such that there are distinct real numbers $\lambda_{1}, \lambda_{2}, \ldots$ and disjoint intervals $I_{1}, I_{2}, \ldots \subset[0,1]$ in such a way that h is equal to λ_{k} on I_{k}. Set

$$
I_{k}=\left[\frac{1}{2 k}, \frac{1}{2 k-1}\right] \text { and } \lambda_{k}=\frac{1}{k}
$$

Set $h(0)=0$ and extend h linearly between I_{k} and I_{k+1}. It is not hard to prove that h is a continuous function such that the eigenvalues for T_{h} are $1 / k ; k \in \mathbb{N}$.

However, there is no $h \in C[0,1]$ such that the set of eigenvalues for T_{h} is uncountable.

