
Functional Analysis, BSM, Spring 2012
Exercise sheet: infinite dimensional vector spaces

Solutions

1. We need to show that kerT is closed under addition and multiplication with scalars.
Assume that v1, v2 ∈ kerT , that is, Tv1 = Tv2 = 0. Then T (v1 + v2) = Tv1 + Tv2 = 0 + 0 = 0, which

means that v1 + v2 ∈ kerT .
If v ∈ kerT , then for any scalar α ∈ F we have T (αv) = αT (v) = 0

2. First we show that if T is injective, then kerT = {0}. Let v be any element in kerT . Then Tv = 0 = T0,
and injectivity implies that v = 0.

In the other direction, assume that kerT = {0}. Suppose that for some u, v ∈ V we have Tu = Tv. It
follows that

T (u− v) = Tu− Tv = 0⇒ u− v ∈ kerT = {0} ⇒ u− v = 0⇒ u = v.

3. The kernel is
{(α1, 0, 0, 0, . . .) : α1 ∈ C} ,

which is a one-dimensional linear subspace.
4. It is easy to check that ker(S ◦ T ) ⊃ kerT . Since ker id = {0} and kerT ) {0}, we get that S ◦ T cannot be
the identity operator for any S.
5. The so-called right shift operator clearly has this property:

(α1, α2, α3, . . .) 7→ (0, α1, α2, α3, . . .).

6. Let L be an arbitrary linear functional on `∞ (i.e., an operator L : `∞ → C). Then the operator

(α1, α2, α3, . . .) 7→ (L(α1, α2, α3, . . .), α1, α2, α3, . . .)

satisfies T ◦ S = id. We will denote this operator by SL. In fact, these are all the operators with the desired
property.
Remark: What are the linear functionals on `∞? Of course, L can be any finite linear combination of the αi’s
such as

L(α1, α2, α3, . . .) = 3α4 − 5α7.

Some infinite linear combinations also give us linear functionals: let (β1, β2, . . .) ∈ `1 and set

L(α1, α2, α3, . . .) =

∞∑
i=1

βiαi.

Actually, one can arbitrarily define L on a basis of `∞; any such function can be uniquely extended to a linear
functional on `∞.
7. {0} ⊂ kerT ⊂ ker(T ◦ S) = ker id = {0}. So kerT = {0}, which is equivalent to injectivity.
8. Since T is injective, 0 cannot be an eigenvalue. Suppose that v = (α1, α2, . . .) is an eigenvector for SL with
eigenvalue λ 6= 0. We get that

v = (α1, α1λ
−1, α1λ

−2, α1λ
−3, . . .).

We can assume that α1 = 1. Then v is an eigenvector if and only if

L(1, λ−1, λ−2, λ−3, . . .) = λ.

So the eigenvalues for SL are exactly those λ’s that satisfy the above equation and for which |λ| ≥ 1. (We need
|λ| ≥ 1, because otherwise the vector v would not be in `∞.)
a) L = 0; so SL : (α1, α2, α3, . . .) 7→ (0, α1, α2, α3, . . .).
b) There is no such S, because for 0 < |λ| < 1 the above v is not in `∞.
c) L(α1, α2, . . . ; ) = α1; so SL : (α1, α2, α3, . . .) 7→ (α1, α1, α2, α3, . . .). The only eigenvalue is 1.
d-e) L(α1, α2, . . . ; ) = α1000; so SL : (α1, α2, α3, . . .) 7→ (α1000, α1, α2, α3, . . .), and our equation transforms to

λ−999 = λ⇔ λ1000 = 1,



which has a thousand different complex roots (with absolute value 1).
f)* Surprisingly, L can be chosen in such a way that all the possible λ’s (those with |λ| ≥ 1) are eigenvalues.
The reason for this is that the vectors

(1, λ−1, λ−2, λ−3, . . .)

are linearly independent in `∞ as λ runs through C \ {0}. Consequently, we can define L for each of these
vectors independently, and it can be extended to a linear functional over `∞. So there exists a linear functional
L with L(1, λ−1, λ−2, λ−3, . . .) = λ for each λ 6= 0. It follows that the set of eigenvalues for SL is {λ : |λ| ≥ 1}.

To prove that these vectors are linearly independent, it suffices to show that any finite collection of them is
independent. Let k be a positive integer, and suppose that λ1, . . . , λk are distinct nonzero complex numbers. It
is enough to consider the first k coordinates: the vectors

(
1, λ−1i , . . . , λ

−(k−1)
i

)
; i = 1, . . . , k are already linearly

independent, because the determinant of the corresponding matrix, which is a Vandermonde determinant, is
nonzero.

9. Tg ◦ Th = Tgh.

10-13. Let h be a fixed continuous function on [0, 1] and let λ be any real number. We will give a necessary
and sufficient condition for λ being an eigenvalue for Th. Suppose that for some f ∈ C[0, 1]{0} we have

h(x)f(x) = λf(x) for every x ∈ [0, 1]⇔ (h(x)− λ) f(x) = 0 for every x ∈ [0, 1].

Let A = {x ∈ [0, 1] : h(x) = λ}. The above equation says that f must be zero everywhere on [0, 1] \A. Since f
is continuous, it follows that f must be zero in the closure of this set. However, the closure of this set is [0, 1]
except when A contains an interval. Consequently, λ is an eigenvalue for Th if and only if h(x) = 0 for every
point x of an interval I ⊂ [0, 1].
10. The kernel is trivial if and only if 0 is not an eigenvalue. For λ = 0: if h(x) = x + 1, then A = ∅; if
h(x) = x− 1/2, then A = {1/2}. Neither of them contains an interval, so 0 is not an eigenvalue in either case.
11. If h ≡ 0, then kerTh = C[0, 1]. Another example:

h(x) =

{
0 if 0 ≤ x ≤ 1/2
x− 1/2 if 1/2 < x ≤ 1

Then:
kerTh = {f ∈ C[0, 1] : f(x) = 0 for 1/2 ≤ x ≤ 1} .

12. Let h be constant λ1 on an interval and some other constant λ2 on an other interval, for example:

h(x) =

 0 if 0 ≤ x ≤ 1/3
x− 1/3 if 1/3 < x ≤ 2/3
1/3 if 2/3 < x ≤ 1

13. We need to construct a continuous function on [0, 1] such that there are distinct real numbers λ1, λ2, . . .
and disjoint intervals I1, I2, . . . ⊂ [0, 1] in such a way that h is equal to λk on Ik. Set

Ik =

[
1

2k
,

1

2k − 1

]
and λk =

1

k
.

Set h(0) = 0 and extend h linearly between Ik and Ik+1. It is not hard to prove that h is a continuous function
such that the eigenvalues for Th are 1/k; k ∈ N.

However, there is no h ∈ C[0, 1] such that the set of eigenvalues for Th is uncountable.


