Functional Analysis, BSM, Spring 2012
 Exercise sheet: metric spaces and convergence
 Solutions

1. We need to show that

$$
-d\left(x_{1}, x_{2}\right) \leq d\left(x_{1}, y\right)-d\left(x_{2}, y\right) \leq d\left(x_{1}, x_{2}\right)
$$

Both inequalities follow from the triangle inequality.
2. Let

$$
S_{n}=\left\{\left(a_{1}, a_{2}, \ldots\right) \in X: a_{n+1}=a_{n+2}=\ldots=0\right\}
$$

This is clearly a finite set (its cardinality is 2^{n}). Moreover, S_{n} has the property that for any point $x \in X$ there exists a point $y \in S_{n}$ such that $d(x, y) \leq 1 /(n+1)$. Indeed: if $x=\left(a_{1}, a_{2}, \ldots\right)$, then let

$$
y=\left(a_{1}, a_{2}, \ldots, a_{n}, 0,0, \ldots\right) \in S_{n}
$$

The first n elements are the same for x and y, so $d(x, y) \leq 1 /(n+1)$.
As for the separability of X, let us consider the set

$$
S=S_{1} \cup S_{2} \cup S_{3} \cup \cdots
$$

This is clearly a countable dense subset of X : if $x \in X$, then let $x_{n} \in S_{n} \subset S$ such that $d\left(x, x_{n}\right) \leq 1 /(n+1)$. The sequence $x_{1}, x_{2}, \ldots \in S$ clearly converges to x. (In fact, with a similar argument one can easily prove that any totally bounded metric space is separable.)
3. We prove by contradiction. Assume that $x \neq y$. Then $d(x, y)>0$; set $\varepsilon=d(x, y) / 2$. Since $x_{n} \xrightarrow{d} x$, there exists N_{1} such that $d\left(x_{n}, x\right)<\varepsilon$ for $n \geq N_{1}$. Since $x_{n} \xrightarrow{d} y$, there exists N_{2} such that $d\left(x_{n}, y\right)<\varepsilon$ for $n \geq N_{2}$. Now let n be any integer greater than $\max \left(N_{1}, N_{2}\right)$; we have

$$
d(x, y) \leq d\left(x_{n}, x\right)+d\left(x_{n}, y\right)<\varepsilon+\varepsilon=d(x, y)
$$

which is a contradiction.
4. We need to prove that $d\left(x_{n}, y\right)-d(x, y) \rightarrow 0$. By Exercise 1 we have

$$
\left|d\left(x_{n}, y\right)-d(x, y)\right| \leq d\left(x_{n}, x\right)
$$

Since $x_{n} \xrightarrow{d} x$, the right-hand side converges to 0 , hence so does the left-hand side.
5. Let $\varepsilon>0$ be an arbitrary real number. Since $x_{n} \xrightarrow{d} x$, there exists N_{1} such that $d\left(x_{n}, x\right)<\varepsilon / 2$ for $n \geq N_{1}$. Since $y_{n} \xrightarrow{d} y$, there exists N_{2} such that $d\left(y_{n}, y\right)<\varepsilon / 2$ for $n \geq N_{2}$. Then for any $n \geq \max \left(N_{1}, N_{2}\right)$ we have

$$
\begin{aligned}
\left|d\left(x_{n}, y_{n}\right)-d(x, y)\right|= & \left|d\left(x_{n}, y_{n}\right)-d\left(x_{n}, y\right)+d\left(x_{n}, y\right)-d(x, y)\right| \leq \\
& \quad\left|d\left(x_{n}, y_{n}\right)-d\left(x_{n}, y\right)\right|+\left|d\left(x_{n}, y\right)-d(x, y)\right| \leq d\left(y_{n}, y\right)+d\left(x_{n}, x\right)<\varepsilon / 2+\varepsilon / 2<\varepsilon
\end{aligned}
$$

This proves that $d\left(x_{n}, y_{n}\right) \rightarrow d(x, y)$.
We can use this fact to give another proof for Exercise 3. Let us consider the special case when $x_{n}=y_{n}$: we have $d\left(x_{n}, y_{n}\right)=0$, so the limit $d(x, y)$ must be 0 , too.
6. Let $\varepsilon>0$ be an arbitrary real number. Since $x_{k_{n}} \rightarrow x$, there exists N_{1} such that $d\left(x_{k_{n}}, x\right)<\varepsilon / 2$ for $n \geq N_{1}$. Since $\left(x_{n}\right)$ is Cauchy, there exists N_{2} such that $d\left(x_{m}, x_{n}\right)<\varepsilon / 2$ for $m, n \geq N_{2}$. Let $N=\max \left(N_{1}, N_{2}\right)$ and $N^{\prime}=k_{N}$. For any $n \geq N^{\prime}$:

$$
d\left(x_{n}, x\right) \leq d\left(x_{n}, x_{k_{N}}\right)+d\left(x_{k_{N}}, x\right)<\varepsilon / 2+\varepsilon / 2=\varepsilon .
$$

7. First we give an uncountable subset of ℓ_{∞} such that the distance of any two distinct points in the set is at least 1. We will see that the existence of such a set implies that the space is not separable. Let

$$
M=\left\{\left(a_{1}, a_{2}, \ldots\right): a_{i} \in\{0,1\}\right\} \subset \ell_{\infty}
$$

It is a well-known fact that M is an uncountable set. Note that the distance of any two distinct points in M is exactly 1 . Now suppose that S is a dense subset in ℓ_{∞}. We need to prove that S is uncountable. Then for each element $x \in M$, there is a sequence in S converging to x, in particular, there is $s \in S$ with $d(x, s)<1 / 2$. Let us choose such a point s for each $x \in M$. We cannot choose the same s for two distinct elements $x \neq y$ of M, because otherwise

$$
1=d(x, y) \leq d(x, s)+d(y, s)<1 / 2+1 / 2=1
$$

Consequently, there is an injective map from M to S. Since M is uncountable, so is S.
8. We need to check that d^{\prime} satisifies all four properties of a metric. The first three are clearly satisfied. To prove the fourth (triangle inequality), it suffices to show that for any nonnegative reals a, b, c with $a+b \geq c$ it holds that

$$
\frac{a}{1+a}+\frac{b}{1+b} \geq \frac{c}{1+c}
$$

which can be shown by straightforward calculation.
The second statement follows from the fact that for nonnegative reals a_{n}, the sequence a_{n} converges to 0 if and only if $a_{n} /\left(1+a_{n}\right) \rightarrow 0$.
9.* Uniqueness is clear. Assume that there are two fixed points: $f(x)=x$ and $f(y)=y$. Since f is a contraction, $d(x, y)=d(f(x), f(y)) \leq q d(x, y)$ for some $0<q<1$. This is a contradiction unless $d(x, y)=0 \Leftrightarrow$ $x=y$.

To prove existence, pick an arbitrary point $x_{0} \in X$ in our complete metric space. Let $x_{1}=f\left(x_{0}\right)$; $x_{2}=f\left(x_{1}\right) ; x_{3}=f\left(x_{2}\right)$ and so on. Our first goal is to show that $\left(x_{n}\right)$ is a Cauchy sequence. We denote the distance $d\left(x_{0}, x_{1}\right)$ by r. Then

$$
d\left(x_{1}, x_{2}\right)=d\left(f\left(x_{0}\right), f\left(x_{1}\right)\right) \leq q d\left(x_{0}, x_{1}\right)=q r .
$$

Similarly,

$$
d\left(x_{2}, x_{3}\right)=d\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq q d\left(x_{1}, x_{2}\right) \leq q^{2} r
$$

After n steps we get that

$$
d\left(x_{n}, x_{n+1}\right) \leq q^{n} r .
$$

It follows that for $m>n$:

$$
d\left(x_{n}, x_{m}\right) \leq d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+\ldots+d\left(x_{m-1}, x_{m}\right) \leq\left(q^{n}+q^{n+1}+\ldots+q^{m-1}\right) r \leq q^{n} \frac{r}{1-q}
$$

For any $\varepsilon>0$, let N be a positive integer for which $q^{N} \frac{r}{1-q}<\varepsilon$. Then $d\left(x_{n}, x_{m}\right)<\varepsilon$ for any $n, m \geq N$. Thus $\left(x_{n}\right)$ is indeed a Cauchy sequence.

Our metric space is complete, so $\left(x_{n}\right)$ is convergent: $x_{n} \xrightarrow{d} x$ for some $x \in X$. We claim that x is a fixed point of f. Since $x_{n} \xrightarrow{d} x, d\left(x_{n}, x\right) \xrightarrow{d} 0$. However,

$$
d\left(x_{n+1}, f(x)\right)=d\left(f\left(x_{n}\right), f(x)\right) \leq q d\left(x_{n}, x\right) \xrightarrow{d} 0 .
$$

It means that the sequence x_{n} converges both to x and to $f(x)$. By Exercise 3, it follows that $x=f(x)$.

