
Functional Analysis, BSM, Spring 2012
Exercise sheet: metric spaces and convergence

Solutions

1. We need to show that
−d(x1, x2) ≤ d(x1, y)− d(x2, y) ≤ d(x1, x2).

Both inequalities follow from the triangle inequality.

2. Let
Sn = {(a1, a2, . . .) ∈ X : an+1 = an+2 = . . . = 0} .

This is clearly a finite set (its cardinality is 2n). Moreover, Sn has the property that for any point x ∈ X there
exists a point y ∈ Sn such that d(x, y) ≤ 1/(n+ 1). Indeed: if x = (a1, a2, . . .), then let

y = (a1, a2, . . . , an, 0, 0, . . .) ∈ Sn.

The first n elements are the same for x and y, so d(x, y) ≤ 1/(n+ 1).
As for the separability of X, let us consider the set

S = S1 ∪ S2 ∪ S3 ∪ · · ·

This is clearly a countable dense subset of X: if x ∈ X, then let xn ∈ Sn ⊂ S such that d(x, xn) ≤ 1/(n+ 1).
The sequence x1, x2, . . . ∈ S clearly converges to x. (In fact, with a similar argument one can easily prove that
any totally bounded metric space is separable.)

3. We prove by contradiction. Assume that x 6= y. Then d(x, y) > 0; set ε = d(x, y)/2. Since xn
d−→ x, there

exists N1 such that d(xn, x) < ε for n ≥ N1. Since xn
d−→ y, there exists N2 such that d(xn, y) < ε for n ≥ N2.

Now let n be any integer greater than max(N1, N2); we have

d(x, y) ≤ d(xn, x) + d(xn, y) < ε+ ε = d(x, y),

which is a contradiction.

4. We need to prove that d(xn, y)− d(x, y)→ 0. By Exercise 1 we have

|d(xn, y)− d(x, y)| ≤ d(xn, x).

Since xn
d−→ x, the right-hand side converges to 0, hence so does the left-hand side.

5. Let ε > 0 be an arbitrary real number. Since xn
d−→ x, there exists N1 such that d(xn, x) < ε/2 for n ≥ N1.

Since yn
d−→ y, there exists N2 such that d(yn, y) < ε/2 for n ≥ N2. Then for any n ≥ max(N1, N2) we have

|d(xn, yn)− d(x, y)| = |d(xn, yn)− d(xn, y) + d(xn, y)− d(x, y)| ≤
|d(xn, yn)− d(xn, y)|+ |d(xn, y)− d(x, y)| ≤ d(yn, y) + d(xn, x) < ε/2 + ε/2 < ε.

This proves that d(xn, yn)→ d(x, y).
We can use this fact to give another proof for Exercise 3. Let us consider the special case when xn = yn:

we have d(xn, yn) = 0, so the limit d(x, y) must be 0, too.

6. Let ε > 0 be an arbitrary real number. Since xkn
→ x, there exists N1 such that d(xkn

, x) < ε/2 for n ≥ N1.
Since (xn) is Cauchy, there exists N2 such that d(xm, xn) < ε/2 for m,n ≥ N2. Let N = max(N1, N2) and
N ′ = kN . For any n ≥ N ′:

d(xn, x) ≤ d (xn, xkN
) + d (xkN

, x) < ε/2 + ε/2 = ε.



7. First we give an uncountable subset of `∞ such that the distance of any two distinct points in the set is at
least 1. We will see that the existence of such a set implies that the space is not separable. Let

M = {(a1, a2, . . .) : ai ∈ {0, 1}} ⊂ `∞.

It is a well-known fact that M is an uncountable set. Note that the distance of any two distinct points in M
is exactly 1. Now suppose that S is a dense subset in `∞. We need to prove that S is uncountable. Then for
each element x ∈M , there is a sequence in S converging to x, in particular, there is s ∈ S with d(x, s) < 1/2.
Let us choose such a point s for each x ∈M . We cannot choose the same s for two distinct elements x 6= y of
M , because otherwise

1 = d(x, y) ≤ d(x, s) + d(y, s) < 1/2 + 1/2 = 1.

Consequently, there is an injective map from M to S. Since M is uncountable, so is S.

8. We need to check that d′ satisifies all four properties of a metric. The first three are clearly satisfied. To
prove the fourth (triangle inequality), it suffices to show that for any nonnegative reals a, b, c with a+ b ≥ c it
holds that

a

1 + a
+

b

1 + b
≥ c

1 + c
,

which can be shown by straightforward calculation.
The second statement follows from the fact that for nonnegative reals an, the sequence an converges to 0

if and only if an/(1 + an)→ 0.

9.* Uniqueness is clear. Assume that there are two fixed points: f(x) = x and f(y) = y. Since f is a
contraction, d(x, y) = d(f(x), f(y)) ≤ qd(x, y) for some 0 < q < 1. This is a contradiction unless d(x, y) = 0⇔
x = y.

To prove existence, pick an arbitrary point x0 ∈ X in our complete metric space. Let x1 = f(x0);
x2 = f(x1); x3 = f(x2) and so on. Our first goal is to show that (xn) is a Cauchy sequence. We denote the
distance d(x0, x1) by r. Then

d(x1, x2) = d(f(x0), f(x1)) ≤ qd(x0, x1) = qr.

Similarly,
d(x2, x3) = d(f(x1), f(x2)) ≤ qd(x1, x2) ≤ q2r.

After n steps we get that
d(xn, xn+1) ≤ qnr.

It follows that for m > n:

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + . . .+ d(xm−1, xm) ≤
(
qn + qn+1 + . . .+ qm−1

)
r ≤ qn

r

1− q
.

For any ε > 0, let N be a positive integer for which qN r
1−q < ε. Then d(xn, xm) < ε for any n,m ≥ N . Thus

(xn) is indeed a Cauchy sequence.
Our metric space is complete, so (xn) is convergent: xn

d−→ x for some x ∈ X. We claim that x is a fixed
point of f . Since xn

d−→ x, d(xn, x)
d−→ 0. However,

d (xn+1, f(x)) = d (f(xn), f(x)) ≤ qd (xn, x)
d−→ 0.

It means that the sequence xn converges both to x and to f(x). By Exercise 3, it follows that x = f(x).


