Functional Analysis, BSM, Spring 2012

Exercise sheet: norms and bounded operators

Let X be a vector space over $F = \mathbb{R}$ or \mathbb{C} ; $\|\cdot\|$ is a *norm* if it satisfies the following properties:

- $||x|| \ge 0$ for any $x \in X$;
- $||x|| = 0 \Leftrightarrow x = 0;$
- $\|\alpha x\| = |\alpha| \cdot \|x\|$ for any $\alpha \in F$ and $x \in X$;
- $||x + y|| \le ||x|| + ||y||$ for any $x, y \in X$.

 $(X, \|\cdot\|)$ is called a *normed space*; $\|x\|$ is the *norm* (or *length*) of the vector $x \in X$.

A normed space $(X, \|\cdot\|)$ is a metric space with the metric $d(x, y) = \|x - y\|$. So we can use all the notions that we defined for metric spaces. A sequence $x_1, x_2, \ldots \in X$ converges to $x \in X$ if $\|x_n - x\| \to 0$ as $n \to \infty$ (that is, for any $\varepsilon > 0$ there exists an N such that $\|x_n - x\| < \varepsilon$ for $n \ge N$). A sequence $x_1, x_2, \ldots \in X$ is Cauchy if for any $\varepsilon > 0$ there exists an N such that $\|x_m - x_n\| < \varepsilon$ for $m, n \ge N$. A normed space is complete if every Cauchy sequence converges. Complete normed spaces are called *Banach spaces*.

Given two normed spaces $(X_1, \|\cdot\|_1)$; $(X_2, \|\cdot\|_2)$, a map $T: X_1 \to X_2$ is a bounded operator if

- it is linear, i.e., T(x+y) = Tx + Ty and $T(\alpha x) = \alpha Tx$;
- and it is bounded, i.e., there exists $C \ge 0$ such that $||Tx||_2 \le C ||x||_1$ for any $x \in X_1$.

The norm (or *operator norm*) of T is defined as the smallest such C, or equivalently:

$$||T|| = ||T||_{1,2} \stackrel{\text{def}}{=} \sup_{x \neq 0} \frac{||Tx||_2}{||x||_1} = \sup_{||x||_1 = 1} ||Tx||_2 = \sup_{||x||_1 \le 1} ||Tx||_2$$

It follows that $||Tx||_2 \leq ||T|| \cdot ||x||_1$ for any $x \in X_1$. By $B(X_1, X_2)$ we denote the space of bounded operators from X_1 to X_2 . It is easy to see that $B(X_1, X_2)$ is a normed space with the operator norm. We proved that if X_2 is complete, then so is $B(X_1, X_2)$.

The ℓ_p spaces are important examples of Banach spaces:

$$p = \infty$$
: $\ell_{\infty} = \{(\alpha_1, \alpha_2, \ldots) : \alpha_n \in \mathbb{C} \text{ and } (\alpha_n) \text{ is bounded}\}$ with the norm $\|(\alpha_1, \alpha_2, \ldots)\|_{\infty} = \sup_n |\alpha_n|;$

$$1 \le p < \infty : \ \ell_p = \left\{ (\alpha_1, \alpha_2, \ldots) : \alpha_i \in \mathbb{C} \text{ and } \sum_{i=1}^{\infty} |\alpha_i|^p < \infty \right\} \text{ with the norm } \|(\alpha_1, \alpha_2, \ldots)\|_p = \sqrt[p]{\left|\sum_{i=1}^{\infty} |\alpha_i|^p\right|}.$$

- **1.** Suppose that $x_n \to x$ and $y_n \to y$ in a normed space. Prove that $x_n + y_n \to x + y$.
- **2.** Prove that $x_n \to x$ implies $||x_n|| \to ||x||$.
- **3.** Let $C^{\infty}[0,1]$ be the space of infinitely differentiable $[0,1] \to \mathbb{R}$ functions with the sup norm:

$$||f|| = \sup_{x \in [0,1]} |f(x)|.$$

Is the derivative operator $(f \mapsto f')$ on $C^{\infty}[0,1]$ bounded?

4. Consider the left shift operator $T : \ell_1 \to \ell_1$:

$$(\alpha_1, \alpha_2, \alpha_3, \ldots) \mapsto (\alpha_2, \alpha_3, \alpha_4, \ldots).$$

Is T bounded? What is the norm of T?

5. W2P2. (4 points) Consider the following operator:

$$T: (\alpha_1, \alpha_2, \alpha_3, \ldots) \mapsto (\alpha_1, \alpha_1, \alpha_2, \alpha_3, \ldots).$$

This can be viewed as an $\ell_p \to \ell_p$ operator for any $1 \le p \le \infty$. Determine the norm of T for each p.

6. a) Consider the space

 $X = \{(\alpha_1, \alpha_2, \ldots) : \alpha_i \in \mathbb{C} \text{ and } \alpha_i = 0 \text{ for all but finitely many } i$'s}

with the ℓ_{∞} -norm:

$$\|(\alpha_1,\alpha_2,\ldots)\|_{\infty} = \sup_{i} |\alpha_i|.$$

We define $T: X \to X$ as

$$(\alpha_1, \alpha_2, \alpha_3, \ldots) \mapsto (\alpha_1 - \alpha_2, \alpha_2 - \alpha_3, \alpha_3 - \alpha_4, \ldots).$$

Is T bounded? Determine ||T||. Show that ker $T = \{0\}$. Prove that T is a bijection from X onto itself. b) Let S be the following $X \to X$ operator:

 $(\alpha_1, \alpha_2, \alpha_3, \ldots) \mapsto (\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \ldots, \alpha_2 + \alpha_3 + \alpha_4 + \ldots, \alpha_3 + \alpha_4 + \ldots, \ldots).$

(Note that only finitely many α_i are nonzero, so these infinite sums are, in fact, finite sums.) Is S bounded? Determine ||S||. What is the connection between S and T?

7. W2P3. (7 points) For $T \in B(X, X)$ the spectral radius of T is

$$\varrho(T) \stackrel{\text{def}}{=} \inf_{k} \sqrt[k]{\|T^k\|} = \lim_{k \to \infty} \sqrt[k]{\|T^k\|}.$$

What is the spectral radius of the following $\ell_1 \rightarrow \ell_1$ operator?

 $(\alpha_1, \alpha_2, \alpha_3, \ldots) \mapsto (2\alpha_1, \alpha_1, \alpha_2, \alpha_3, \ldots)$

Show an eigenvalue λ for this operator such that $|\lambda|$ is equal to the spectral radius. 8.* W2P4. (12 points) What is the spectral radius of the following $\ell_{\infty} \to \ell_{\infty}$ operator?

$$(\alpha_1, \alpha_2, \alpha_3, \ldots) \mapsto (\alpha_1 + \alpha_2, \alpha_1, \alpha_2, \alpha_3, \ldots)$$

Show an eigenvalue λ for this operator such that $|\lambda|$ is equal to the spectral radius.

9. Let λ be an eigenvalue for the operator $T \in B(X, X)$. Prove that $|\lambda| \leq ||T||$. Also prove that $|\lambda| \leq \varrho(T)$. **10.** W2P5. (10 points) Let $(X, ||\cdot||)$ be a normed space. For a sequence $x_1, x_2, \ldots \in X$ let $s_n = \sum_{i=1}^n x_i$. If (s_n) is convergent, then we call the sequence (x_n) summable; we can think of the limit point of (s_n) as the infinite sum $\sum_{i=1}^{\infty} x_i$. We call the sequence (x_n) absolutely summable if $\sum_{i=1}^{\infty} ||x_i|| < \infty$.

Prove that in a Banach space every absolutely summable sequence is summable.

11.* W2P6. (15 points) Suppose that in a normed space $(X, \|\cdot\|)$ every absolutely summable sequence is summable. Prove that $(X, \|\cdot\|)$ is a Banach space.

Solutions can be found on: www.renyi.hu/~harangi/bsm/