Functional Analysis, BSM, Spring 2012

Exercise sheet: norms and bounded operators

Solutions

1.

$$
0 \leq\left\|\left(x_{n}+y_{n}\right)-(x+y)\right\|=\left\|\left(x_{n}-x\right)+\left(y_{n}-y\right)\right\| \leq\left\|\left(x_{n}-x\right)\right\|+\left\|\left(y_{n}-y\right)\right\| .
$$

Both terms on the right-hand side converge to 0 , so $\left\|\left(x_{n}+y_{n}\right)-(x+y)\right\|$ converges to 0 as well.
2.

$$
\mid\left\|x_{n}\right\|-\|x\|\|\leq\| x_{n}-x \| \rightarrow 0 .
$$

3. Let us denote the derivative operator by T; so $T f=f^{\prime}$. We claim that T is not bounded, that is, there is no upper bound for the ratio $\frac{\|T f\|}{\|f\|}$. In other words, there exist functions $f_{n} \in C^{\infty}[0,1]$ such that the ratio $\frac{\left\|f_{n}^{\prime}\right\|}{\left\|f_{n}\right\|}$ goes to infinity as $n \rightarrow \infty$.

Let $f_{n}(x)=e^{n x}$; then $f_{n}^{\prime}(x)=n \cdot e^{n x}$. We have

$$
\left\|f_{n}\right\|=\sup _{x \in[0,1]}\left|e^{n x}\right|=e^{n}
$$

Similarly,

$$
\left\|f_{n}^{\prime}\right\|=\sup _{x \in[0,1]}\left|n \cdot e^{n x}\right|=n \cdot e^{n}
$$

Their ratio is n, which tends to infinity as we wanted.
4. For $x=\left(\alpha_{1}, \alpha_{2}, \ldots\right) \neq 0$ we have

$$
\frac{\|T x\|_{1}}{\|x\|_{1}}=\frac{\left|\alpha_{2}\right|+\left|\alpha_{3}\right|+\ldots}{\left|\alpha_{1}\right|+\left|\alpha_{2}\right|+\left|\alpha_{3}\right|+\ldots}
$$

The numerator is clearly less than or equal to the denominator, so this ratio is always at most 1 . This means that T is bounded and $\|T\| \leq 1$. To show that $\|T\|=1$, let x be any element of ℓ_{1} with $\alpha_{1}=0$, for example, let $x=(0,1 / 2,1 / 4,1 / 8, \ldots)$. Then the numerator and the denominator are equal, so in this case the ratio is 1 .
5. Let $x=\left(\alpha_{1}, \alpha_{2}, \ldots\right)$. For $p=\infty$ we have $\|T x\|_{\infty}=\|x\|_{\infty}$ for any $x \in \ell_{\infty}$. This means that $\|T\|_{\infty, \infty}=1$. For $1 \leq p<\infty$ and $x \in \ell_{p}$:

$$
\|x\|_{p}=\sqrt[p]{\left|\alpha_{1}\right|^{p}+\left|\alpha_{2}\right|^{p}+\left|\alpha_{3}\right|^{p}+\ldots}
$$

and

$$
\|T x\|_{p}=\sqrt[p]{2\left|\alpha_{1}\right|^{p}+\left|\alpha_{2}\right|^{p}+\left|\alpha_{3}\right|^{p}+\ldots}
$$

Clearly,

$$
\|T x\|_{p} \leq \sqrt[p]{2} \cdot\|x\|_{p}
$$

with equality whenever $\alpha_{2}=\alpha_{3}=\ldots=0$. It follows that $\|T\|_{p, p}=\sqrt[p]{2}$.
6.

$$
\left|\alpha_{n}-\alpha_{n+1}\right| \leq\left|\alpha_{n}\right|+\left|\alpha_{n+1}\right| \leq 2 \cdot \sup _{i}\left|\alpha_{i}\right|,
$$

which implies that $\|T x\| \leq 2\|x\|$ for any $x \in X$. We show an $x \in X$ for which we have equality, thus proving that $\|T\|=2$. Let $x=(1,-1,0,0,0, \ldots)$; then $T(x)=(2,-1,0,0,0, \ldots)$. So $\|x\|=1$ and $\|T x\|=2$.

The operator S, on the other hand, is not bounded. Let

$$
x=(\underbrace{1,1, \ldots, 1}_{n}, 0,0, \ldots) \in X .
$$

Then

$$
S x=(n, n-1, n-2, \ldots, 1,0,0, \ldots) .
$$

So $\|S x\|=n$, while $\|x\|=1$; thus the ratio is not bounded; $\|S\|=\infty$.
Now we prove that $\operatorname{ker} T=\{0\}$. Suppose that $T x=0$ for some $x=\left(\alpha_{1}, \alpha_{2}, \ldots\right) \in X$. It means that $\alpha_{1}-\alpha_{2}=\alpha_{2}-\alpha_{3}=\ldots=0$. Thus $\alpha_{1}=\alpha_{2}=\alpha_{3}=\ldots$. However, all but finitely many α_{i} 's are zero, so they all must be zero, that is, $x=0$.

As we have seen, $\operatorname{ker} T=\{0\}$ implies that T is injective. For surjectivity, notice that S is the inverse of T, that is, $S T=T S=$ id. So if $x \in X$, then for $y=S x$ we have $T y=T(S x)=x$.
7.

$$
T^{k}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right)=\left(2^{k} \alpha_{1}, 2^{k-1} \alpha_{1}, 2^{k-2} \alpha_{1}, \ldots, \alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right),
$$

the ℓ_{1}-norm of which is

$$
\left(2^{k+1}-1\right)\left|\alpha_{1}\right|+\left|\alpha_{2}\right|+\left|\alpha_{3}\right|+\ldots
$$

Thus $\left\|T^{k} x\right\|_{1} \leq\left(2^{k+1}-1\right)\|x\|_{1}$ for any $x \in X$ with equality if $\alpha_{2}=\alpha_{3}=\ldots=0$. Consequently, $\left\|T^{k}\right\|=$ $2^{k+1}-1$, which yields that

$$
2<\sqrt[k]{\left\|T^{k}\right\|}<2 \cdot \sqrt[k]{2}
$$

It follows that the limit (as $k \rightarrow \infty$) is 2 . Thus $\varrho(T)=2$.
For $x=(1,1 / 2,1 / 4,1 / 8, \ldots)$ we have $T x=2 x$, so $\lambda=2$ is an eigenvalue for T.
8.* By F_{n} we denote the Fibonacci numbers: $F_{0}=0, F_{1}=1, F_{2}=1, F_{3}=2, F_{4}=3, F_{5}=5, F_{6}=8$, and so on. It can be proved easily by induction on k that for $x=\left(\alpha_{1}, \alpha_{2}, \ldots\right)$:

$$
T^{k} x=\left(F_{k+1} \alpha_{1}+F_{k} \alpha_{2}, F_{k} \alpha_{1}+F_{k-1} \alpha_{2}, \ldots, F_{2} \alpha_{1}+F_{1} \alpha_{2}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right)
$$

It follows that $\left\|T^{k} x\right\|_{\infty} \leq\left(F_{k+1}+F_{k}\right)\|x\|_{\infty}=F_{k+2}\|x\|_{\infty}$ with equality if $x=(1,1,0,0, \ldots)$. This means that $\left\|T^{k}\right\|_{\infty, \infty}=F_{k+2}$. Using that

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

we conclude that $\varrho(T)=(1+\sqrt{5}) / 2$.
Now let $\varphi=(1+\sqrt{5}) / 2$; we show that φ is an eigenvalue for T. Notice that $\varphi^{2}=\varphi+1$. Using this it is easy to see that

$$
x=\left(\varphi, 1, \varphi^{-1}, \varphi^{-2}, \varphi^{-3}, \ldots\right)
$$

is an eigenvector with eigenvalue φ.
9. Let x be an eigenvector for λ :

$$
\frac{\|T x\|}{\|x\|}=\frac{\|\lambda x\|}{\|x\|}=\frac{|\lambda| \cdot\|x\|}{\|x\|}=|\lambda| .
$$

Since $\|T\|$ is the supremum of $\|T x\| /\|x\|$, it follows that $|\lambda| \leq\|T\|$.
To prove that $|\lambda| \leq \varrho(T)$, we need the following observation: if x is an eigenvector for T with eigenvalue λ, then x is also en eigenvector for T^{k}, but this time with eigenvalue λ^{k}. This is easy to prove by induction:

$$
T^{k} x=T\left(T^{k-1} x\right)=T\left(\lambda^{k-1} x\right)=\lambda^{k-1} T(x)=\lambda^{k-1} \cdot \lambda x=\lambda^{k} x .
$$

Applying the already proven first inequality to the operator T^{k} we get that $\left|\lambda^{k}\right| \leq\left\|T^{k}\right\|$. Taking k-th root:

$$
|\lambda| \leq \sqrt[k]{\left\|T^{k}\right\|}
$$

Taking the limit as $k \rightarrow \infty,|\lambda| \leq \varrho(T)$ follows.
10. Let x_{n} be an absolutely summable sequence in a Banach space, and set

$$
r_{N} \stackrel{\text { def }}{=} \sum_{i=N+1}^{\infty}\left\|x_{i}\right\| .
$$

Since $\sum_{i=1}^{\infty}\left\|x_{i}\right\|<\infty$, we know that $r_{N} \rightarrow 0$ as $N \rightarrow \infty$. This means that for any $\varepsilon>0$ there is an N such that $r_{N}<\varepsilon$. Then for $n \geq m \geq N$:

$$
\left\|s_{n}-s_{m}\right\|=\left\|x_{m+1}+x_{m+2}+\ldots+x_{n}\right\| \leq\left\|x_{m+1}\right\|+\left\|x_{m+2}\right\|+\ldots+\left\|x_{n}\right\| \leq r_{N}<\varepsilon
$$

Consequently, the sequence s_{1}, s_{2}, \ldots is Cauchy. Our space is complete, so it follows that $\left(s_{n}\right)$ is convergent. Then, by definition, $\left(x_{n}\right)$ is summable.
11.* Let x_{1}, x_{2}, \ldots be an arbitrary Cauchy sequence. We need to prove that it is convergent. For $\varepsilon=1 / 2^{k}$ let us choose N_{k} such that $\left\|x_{n}-x_{m}\right\| \leq 1 / 2^{k}$ if $n, m \geq N_{k}$. We can assume that $N_{k+1}>N_{k}$. Consider the sequence $y_{k}=x_{N_{k+1}}-x_{N_{k}}$. We claim that this sequence is absolutely summable. Indeed,

$$
\left\|y_{k}\right\|=\left\|x_{N_{k+1}}-x_{N_{k}}\right\| \leq \frac{1}{2^{k}}
$$

thus

$$
\sum_{k=1}^{\infty}\left\|y_{k}\right\| \leq \sum_{k=1}^{\infty} \frac{1}{2^{k}}=1<\infty
$$

Our assumpion was that every absolutely summable sequence is summable, so $\left(y_{k}\right)$ is summable, that is, $\left(x_{N_{k}}\right)$ is convergent. We proved that the Cauchy sequence x_{1}, x_{2}, \ldots has a convergent subsequence. It follows that $\left(x_{n}\right)$ is convergent, too.

