Functional Analysis, BSM, Spring 2012
Exercise sheet: norms and bounded operators
Solutions

0<(@n+un) = (@+y)ll = l(@n—2)+ Y — ) <@ —2)[| + Iy — -
Both terms on the right-hand side converge to 0, so ||(zn + yn) — (x + y)|| converges to 0 as well.

2.
Mzl = llzl| < flzn — ]| = 0.

3. Let us denote the derivative operator by T'; so T'f = f’. We claim that T is not bounded, that is, there

is no upper bound for the ratio % In other words, there exist functions f,, € C°°[0, 1] such that the ratio

M goes to infinity as n — oo.

Let fn(z) = €"; then f}(x) =n-e"". We have

[full = sup [e"*] =e".
z€[0,1]
Similarly,
[foll = sup |n-e™|=n-e".
z€[0,1]

Their ratio is n, which tends to infinity as we wanted.

4. For x = (a1, a2,...) # 0 we have

HT$||1 _ \a2|—|—\a3|—|—...
llzllh  foa| + [az| + [as| + ...

The numerator is clearly less than or equal to the denominator, so this ratio is always at most 1. This means
that T is bounded and | T|| < 1. To show that ||T'|| = 1, let = be any element of ¢; with a3 = 0, for example,
let z = (0,1/2,1/4,1/8,...). Then the numerator and the denominator are equal, so in this case the ratio is 1.

5. Let = (a1, az,...). For p =00 we have ||T2||cc = ||Z||c for any € ¢s. This means that ||T|co,0co = 1.
For 1 <p < oo and x € {,:

lzll, = §/Toal? + JozlP + |as|P + . ..

and
Tzl = &/2laa|P + [aalr + |as]? + ..
Clearly,
Tl < /2 |Jall,
with equality whenever as = a3 = ... = 0. It follows that ||T'[|,, = /2.
6.

lan = any1] < an| + g | <2 sup |ail,
K2

which implies that ||Tz|| < 2|z| for any z € X. We show an z € X for which we have equality, thus proving
that ||| = 2. Let x = (1,-1,0,0,0,...); then T(x) = (2,-1,0,0,0,...). So ||z|| = 1 and || Tz| = 2.
The operator S, on the other hand, is not bounded. Let

z=(1,1,...,1,0,0,...) € X.
———
Then
Sr=(n,n—1,n—-2,...,1,0,0,...).
So ||Sz|| = n, while ||z|| = 1; thus the ratio is not bounded; ||.S]| = co.
Now we prove that ker T = {0}. Suppose that Tz = 0 for some z = (a1,as2,...) € X. It means that
ay —ag =ay —az=...=0. Thus a1 = as = a3 = .... However, all but finitely many «;’s are zero, so they

all must be zero, that is, x = 0.
As we have seen, ker T = {0} implies that T is injective. For surjectivity, notice that S is the inverse of T,
that is, ST =TS =1id. So if x € X, then for y = Sz we have Ty = T(Sz) = «.



k k k—1 k—2
T (041,042,043,...):(2 041,2 041,2 0&1,...,0{1,0{2,0[3,...),

the ¢1-norm of which is
(2k+1 — 1) |a1| —|— |a2| —|— |a3| —|— .

Thus ||T%z|; < (28! — 1)||z||; for any x € X with equality if ap = a3 = ... = 0. Consequently, | T*|| =

ok+L _ 1, which yields that
2< Tv| <2- V2.
It follows that the limit (as k — o0) is 2. Thus o(T') = 2.
For x = (1,1/2,1/4,1/8,...) we have Ta = 2x, so A = 2 is an eigenvalue for T
8.* By F,, we denote the Fibonacci numbers: Fy =0, Fy =1, Fo =1, F3 =2, Fy =3, F5 =5, Fg = 8, and so
on. It can be proved easily by induction on k that for z = (a1, as,...):
TFz = (Frr101 + Froo, Fraq + Fy_1ao, ..., Faar + Flas, a1, 9,03, ...) .

It follows that ||T7%2|lec < (Fri1 + Fi)||Z]lco = Fraz2||7|lco With equality if = (1,1,0,0,...). This means that

I T*||s.00 = Fioyo. Using that
poo L (1EVB) 1 (145
n \/5 2 \/5 2
we conclude that o(T) = (14 v/5)/2.
Now let » = (1 +/5)/2; we show that ¢ is an eigenvalue for T. Notice that p? = ¢ + 1. Using this it is
easy to see that

= ((p’ 17 8071’ (p727 @737 .t ')
is an eigenvector with eigenvalue ¢.

9. Let x be an eigenvector for \:
[Tl [l (AL [l

=l [l [l
Since ||T|| is the supremum of ||Tz||/||z||, it follows that [A| < ||T|.
To prove that || < o(T), we need the following observation: if x is an eigenvector for T' with eigenvalue A,
then z is also en eigenvector for 7%, but this time with eigenvalue A\¥. This is easy to prove by induction:

Tre =T (T 'z) =T (A '2) = A 1T (2) = A1 da = Ao

Applying the already proven first inequality to the operator T% we get that |\*| < ||T%||. Taking k-th root:
Al < {/IITH].
Taking the limit as k — oo, |A| < o(T) follows.

10. Let x,, be an absolutely summable sequence in a Banach space, and set

o0

def
rn S Yl

i=N+1
Since Y%, ||ai]| < 0o, we know that ry — 0 as N — oo. This means that for any £ > 0 there is an N such
that rny < e. Then for n > m > N:
[$n = smll = [|Tmt1 + Tmgz + - o+ 2ol < [Tl + [[Tmgall + -+ 2] <7y <e

Consequently, the sequence sy, sa,... is Cauchy. Our space is complete, so it follows that (s,) is convergent.
Then, by definition, (z,) is summable.

11.* Let 1,29, ... be an arbitrary Cauchy sequence. We need to prove that it is convergent. For ¢ = 1/2F
let us choose Nj such that ||z, — z,,| < 1/2% if n,m > Nj. We can assume that Ny.; > Nj. Consider the
sequence yx = Tn,,, — TN, We claim that this sequence is absolutely summable. Indeed,

1
ol = llzviss = o < 55

thus
oo oo 1
Sl <30 e =1 < .
k=1 k=1

Our assumpion was that every absolutely summable sequence is summable, so (yj) is summable, that is, (zn,)
is convergent. We proved that the Cauchy sequence x1,xo, ... has a convergent subsequence. It follows that
(xy,) is convergent, too.



