
Functional Analysis, BSM, Spring 2012
Exercise sheet: norms and bounded operators

Solutions

1.
0 ≤ ‖(xn + yn)− (x+ y)‖ = ‖(xn − x) + (yn − y)‖ ≤ ‖(xn − x)‖+ ‖(yn − y)‖.

Both terms on the right-hand side converge to 0, so ‖(xn + yn)− (x+ y)‖ converges to 0 as well.

2.
|‖xn‖ − ‖x‖| ≤ ‖xn − x‖ → 0.

3. Let us denote the derivative operator by T ; so Tf = f ′. We claim that T is not bounded, that is, there
is no upper bound for the ratio ‖Tf‖

‖f‖ . In other words, there exist functions fn ∈ C∞[0, 1] such that the ratio
‖f ′

n‖
‖fn‖ goes to infinity as n→∞.

Let fn(x) = enx; then f ′n(x) = n · enx. We have

‖fn‖ = sup
x∈[0,1]

|enx| = en.

Similarly,
‖f ′n‖ = sup

x∈[0,1]
|n · enx| = n · en.

Their ratio is n, which tends to infinity as we wanted.

4. For x = (α1, α2, . . .) 6= 0 we have

‖Tx‖1
‖x‖1

=
|α2|+ |α3|+ . . .

|α1|+ |α2|+ |α3|+ . . .
.

The numerator is clearly less than or equal to the denominator, so this ratio is always at most 1. This means
that T is bounded and ‖T‖ ≤ 1. To show that ‖T‖ = 1, let x be any element of `1 with α1 = 0, for example,
let x = (0, 1/2, 1/4, 1/8, . . .). Then the numerator and the denominator are equal, so in this case the ratio is 1.

5. Let x = (α1, α2, . . .). For p =∞ we have ‖Tx‖∞ = ‖x‖∞ for any x ∈ `∞. This means that ‖T‖∞,∞ = 1.
For 1 ≤ p <∞ and x ∈ `p:

‖x‖p = p
√
|α1|p + |α2|p + |α3|p + . . .

and
‖Tx‖p = p

√
2|α1|p + |α2|p + |α3|p + . . .

Clearly,
‖Tx‖p ≤ p

√
2 · ‖x‖p

with equality whenever α2 = α3 = . . . = 0. It follows that ‖T‖p,p = p
√
2.

6.
|αn − αn+1| ≤ |αn|+ |αn+1| ≤ 2 · sup

i
|αi|,

which implies that ‖Tx‖ ≤ 2‖x‖ for any x ∈ X. We show an x ∈ X for which we have equality, thus proving
that ‖T‖ = 2. Let x = (1,−1, 0, 0, 0, . . .); then T (x) = (2,−1, 0, 0, 0, . . .). So ‖x‖ = 1 and ‖Tx‖ = 2.

The operator S, on the other hand, is not bounded. Let

x = (1, 1, . . . , 1︸ ︷︷ ︸
n

, 0, 0, . . .) ∈ X.

Then
Sx = (n, n− 1, n− 2, . . . , 1, 0, 0, . . .).

So ‖Sx‖ = n, while ‖x‖ = 1; thus the ratio is not bounded; ‖S‖ =∞.
Now we prove that kerT = {0}. Suppose that Tx = 0 for some x = (α1, α2, . . .) ∈ X. It means that

α1 − α2 = α2 − α3 = . . . = 0. Thus α1 = α2 = α3 = . . .. However, all but finitely many αi’s are zero, so they
all must be zero, that is, x = 0.

As we have seen, kerT = {0} implies that T is injective. For surjectivity, notice that S is the inverse of T ,
that is, ST = TS = id. So if x ∈ X, then for y = Sx we have Ty = T (Sx) = x.



7.
T k(α1, α2, α3, . . .) = (2kα1, 2

k−1α1, 2
k−2α1, . . . , α1, α2, α3, . . .),

the `1-norm of which is (
2k+1 − 1

)
|α1|+ |α2|+ |α3|+ . . .

Thus ‖T kx‖1 ≤ (2k+1 − 1)‖x‖1 for any x ∈ X with equality if α2 = α3 = . . . = 0. Consequently, ‖T k‖ =
2k+1 − 1, which yields that

2 < k

√
‖T k‖ < 2 · k

√
2.

It follows that the limit (as k →∞) is 2. Thus %(T ) = 2.
For x = (1, 1/2, 1/4, 1/8, . . .) we have Tx = 2x, so λ = 2 is an eigenvalue for T .

8.* By Fn we denote the Fibonacci numbers: F0 = 0, F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, and so
on. It can be proved easily by induction on k that for x = (α1, α2, . . .):

T kx = (Fk+1α1 + Fkα2, Fkα1 + Fk−1α2, . . . , F2α1 + F1α2, α1, α2, α3, . . .) .

It follows that ‖T kx‖∞ ≤ (Fk+1 + Fk)‖x‖∞ = Fk+2‖x‖∞ with equality if x = (1, 1, 0, 0, . . .). This means that
‖T k‖∞,∞ = Fk+2. Using that

Fn =
1√
5

(
1 +
√
5

2

)n

− 1√
5

(
1−
√
5

2

)n

we conclude that %(T ) = (1 +
√
5)/2.

Now let ϕ = (1 +
√
5)/2; we show that ϕ is an eigenvalue for T . Notice that ϕ2 = ϕ + 1. Using this it is

easy to see that
x =

(
ϕ, 1, ϕ−1, ϕ−2, ϕ−3, . . .

)
is an eigenvector with eigenvalue ϕ.

9. Let x be an eigenvector for λ:
‖Tx‖
‖x‖

=
‖λx‖
‖x‖

=
|λ| · ‖x‖
‖x‖

= |λ|.

Since ‖T‖ is the supremum of ‖Tx‖/‖x‖, it follows that |λ| ≤ ‖T‖.
To prove that |λ| ≤ %(T ), we need the following observation: if x is an eigenvector for T with eigenvalue λ,

then x is also en eigenvector for T k, but this time with eigenvalue λk. This is easy to prove by induction:

T kx = T
(
T k−1x

)
= T

(
λk−1x

)
= λk−1T (x) = λk−1 · λx = λkx.

Applying the already proven first inequality to the operator T k we get that |λk| ≤ ‖T k‖. Taking k-th root:

|λ| ≤ k

√
‖T k‖.

Taking the limit as k →∞, |λ| ≤ %(T ) follows.

10. Let xn be an absolutely summable sequence in a Banach space, and set

rN
def
=

∞∑
i=N+1

‖xi‖.

Since
∑∞

i=1 ‖xi‖ < ∞, we know that rN → 0 as N → ∞. This means that for any ε > 0 there is an N such
that rN < ε. Then for n ≥ m ≥ N :

‖sn − sm‖ = ‖xm+1 + xm+2 + . . .+ xn‖ ≤ ‖xm+1‖+ ‖xm+2‖+ . . .+ ‖xn‖ ≤ rN < ε.

Consequently, the sequence s1, s2, . . . is Cauchy. Our space is complete, so it follows that (sn) is convergent.
Then, by definition, (xn) is summable.

11.* Let x1, x2, . . . be an arbitrary Cauchy sequence. We need to prove that it is convergent. For ε = 1/2k

let us choose Nk such that ‖xn − xm‖ ≤ 1/2k if n,m ≥ Nk. We can assume that Nk+1 > Nk. Consider the
sequence yk = xNk+1

− xNk
. We claim that this sequence is absolutely summable. Indeed,

‖yk‖ = ‖xNk+1
− xNk

‖ ≤ 1

2k
,

thus
∞∑
k=1

‖yk‖ ≤
∞∑
k=1

1

2k
= 1 <∞.

Our assumpion was that every absolutely summable sequence is summable, so (yk) is summable, that is, (xNk
)

is convergent. We proved that the Cauchy sequence x1, x2, . . . has a convergent subsequence. It follows that
(xn) is convergent, too.


