Functional Analysis, BSM, Spring 2012

Exercise sheet: norms and bounded operators Solutions

1.

$$0 \le ||(x_n + y_n) - (x + y)|| = ||(x_n - x) + (y_n - y)|| \le ||(x_n - x)|| + ||(y_n - y)||.$$

Both terms on the right-hand side converge to 0, so $||(x_n + y_n) - (x + y)||$ converges to 0 as well.

2.

$$|||x_n|| - ||x||| \le ||x_n - x|| \to 0.$$

3. Let us denote the derivative operator by T; so Tf = f'. We claim that T is not bounded, that is, there is no upper bound for the ratio $\frac{\|T_f\|}{\|f\|}$. In other words, there exist functions $f_n \in C^{\infty}[0,1]$ such that the ratio $\frac{\|f'_n\|}{\|f_n\|} \text{ goes to infinity as } n \to \infty.$ Let $f_n(x) = e^{nx}$; then $f'_n(x) = n \cdot e^{nx}$. We have

$$||f_n|| = \sup_{x \in [0,1]} |e^{nx}| = e^n.$$

Similarly,

$$||f'_n|| = \sup_{x \in [0,1]} |n \cdot e^{nx}| = n \cdot e^n.$$

Their ratio is n, which tends to infinity as we wanted.

4. For $x = (\alpha_1, \alpha_2, \ldots) \neq 0$ we have

$$\frac{|Tx\|_1}{\|x\|_1} = \frac{|\alpha_2| + |\alpha_3| + \dots}{|\alpha_1| + |\alpha_2| + |\alpha_3| + \dots}.$$

The numerator is clearly less than or equal to the denominator, so this ratio is always at most 1. This means that T is bounded and $||T|| \leq 1$. To show that ||T|| = 1, let x be any element of ℓ_1 with $\alpha_1 = 0$, for example, let x = (0, 1/2, 1/4, 1/8, ...). Then the numerator and the denominator are equal, so in this case the ratio is 1.

5. Let $x = (\alpha_1, \alpha_2, \ldots)$. For $p = \infty$ we have $||Tx||_{\infty} = ||x||_{\infty}$ for any $x \in \ell_{\infty}$. This means that $||T||_{\infty,\infty} = 1$. For $1 \leq p < \infty$ and $x \in \ell_p$:

$$||x||_p = \sqrt[p]{|\alpha_1|^p + |\alpha_2|^p + |\alpha_3|^p + \dots}$$

and

 $||Tx||_{p} = \sqrt[p]{2|\alpha_{1}|^{p} + |\alpha_{2}|^{p} + |\alpha_{3}|^{p} + \dots}$

Clearly,

 $||Tx||_p \le \sqrt[p]{2} \cdot ||x||_p$

with equality whenever $\alpha_2 = \alpha_3 = \ldots = 0$. It follows that $||T||_{p,p} = \sqrt[p]{2}$.

6.

$$|\alpha_n - \alpha_{n+1}| \le |\alpha_n| + |\alpha_{n+1}| \le 2 \cdot \sup |\alpha_i|,$$

which implies that $||Tx|| \leq 2||x||$ for any $x \in X$. We show an $x \in X$ for which we have equality, thus proving that ||T|| = 2. Let x = (1, -1, 0, 0, 0, ...); then T(x) = (2, -1, 0, 0, 0, ...). So ||x|| = 1 and ||Tx|| = 2.

The operator S, on the other hand, is not bounded. Let

$$x = (\underbrace{1, 1, \dots, 1}_{n}, 0, 0, \dots) \in X$$

Then

$$Sx = (n, n - 1, n - 2, \dots, 1, 0, 0, \dots).$$

So ||Sx|| = n, while ||x|| = 1; thus the ratio is not bounded; $||S|| = \infty$.

Now we prove that ker $T = \{0\}$. Suppose that Tx = 0 for some $x = (\alpha_1, \alpha_2, \ldots) \in X$. It means that $\alpha_1 - \alpha_2 = \alpha_2 - \alpha_3 = \ldots = 0$. Thus $\alpha_1 = \alpha_2 = \alpha_3 = \ldots$ However, all but finitely many α_i 's are zero, so they all must be zero, that is, x = 0.

As we have seen, ker $T = \{0\}$ implies that T is injective. For surjectivity, notice that S is the inverse of T, that is, ST = TS = id. So if $x \in X$, then for y = Sx we have Ty = T(Sx) = x.

$$T^{k}(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots) = (2^{k}\alpha_{1}, 2^{k-1}\alpha_{1}, 2^{k-2}\alpha_{1}, \ldots, \alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots),$$

the ℓ_1 -norm of which is

$$(2^{k+1}-1) |\alpha_1| + |\alpha_2| + |\alpha_3| + \dots$$

Thus $||T^k x||_1 \leq (2^{k+1}-1)||x||_1$ for any $x \in X$ with equality if $\alpha_2 = \alpha_3 = \ldots = 0$. Consequently, $||T^k|| = 2^{k+1} - 1$, which yields that

$$2 < \sqrt[k]{\|T^k\|} < 2 \cdot \sqrt[k]{2}.$$

It follows that the limit (as $k \to \infty$) is 2. Thus $\rho(T) = 2$. For x = (1, 1/2, 1/4, 1/8, ...) we have Tx = 2x, so $\lambda = 2$ is an eigenvalue for T.

8.* By F_n we denote the Fibonacci numbers: $F_0 = 0$, $F_1 = 1$, $F_2 = 1$, $F_3 = 2$, $F_4 = 3$, $F_5 = 5$, $F_6 = 8$, and so on. It can be proved easily by induction on k that for $x = (\alpha_1, \alpha_2, \ldots)$:

$$T^{k}x = (F_{k+1}\alpha_{1} + F_{k}\alpha_{2}, F_{k}\alpha_{1} + F_{k-1}\alpha_{2}, \dots, F_{2}\alpha_{1} + F_{1}\alpha_{2}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \dots).$$

It follows that $||T^k x||_{\infty} \leq (F_{k+1} + F_k) ||x||_{\infty} = F_{k+2} ||x||_{\infty}$ with equality if x = (1, 1, 0, 0, ...). This means that $||T^k||_{\infty,\infty} = F_{k+2}$. Using that

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)$$

we conclude that $\rho(T) = (1 + \sqrt{5})/2$.

Now let $\varphi = (1 + \sqrt{5})/2$; we show that φ is an eigenvalue for T. Notice that $\varphi^2 = \varphi + 1$. Using this it is easy to see that

$$x = \left(\varphi, 1, \varphi^{-1}, \varphi^{-2}, \varphi^{-3}, \ldots\right)$$

is an eigenvector with eigenvalue φ .

9. Let x be an eigenvector for λ :

$$\frac{|Tx||}{||x||} = \frac{||\lambda x||}{||x||} = \frac{|\lambda| \cdot ||x||}{||x||} = |\lambda|.$$

Since ||T|| is the supremum of ||Tx||/||x||, it follows that $|\lambda| \leq ||T||$.

To prove that $|\lambda| \leq \rho(T)$, we need the following observation: if x is an eigenvector for T with eigenvalue λ , then x is also en eigenvector for T^k , but this time with eigenvalue λ^k . This is easy to prove by induction:

$$T^{k}x = T\left(T^{k-1}x\right) = T\left(\lambda^{k-1}x\right) = \lambda^{k-1}T(x) = \lambda^{k-1} \cdot \lambda x = \lambda^{k}x.$$

Applying the already proven first inequality to the operator T^k we get that $|\lambda^k| \leq ||T^k||$. Taking k-th root:

$$|\lambda| \le \sqrt[k]{\|T^k\|}.$$

Taking the limit as $k \to \infty$, $|\lambda| \le \rho(T)$ follows.

10. Let x_n be an absolutely summable sequence in a Banach space, and set

$$r_N \stackrel{\text{def}}{=} \sum_{i=N+1}^{\infty} \|x_i\|.$$

Since $\sum_{i=1}^{\infty} \|x_i\| < \infty$, we know that $r_N \to 0$ as $N \to \infty$. This means that for any $\varepsilon > 0$ there is an N such that $r_N < \varepsilon$. Then for $n \ge m \ge N$:

$$||s_n - s_m|| = ||x_{m+1} + x_{m+2} + \ldots + x_n|| \le ||x_{m+1}|| + ||x_{m+2}|| + \ldots + ||x_n|| \le r_N < \varepsilon.$$

Consequently, the sequence s_1, s_2, \ldots is Cauchy. Our space is complete, so it follows that (s_n) is convergent. Then, by definition, (x_n) is summable.

11.* Let x_1, x_2, \ldots be an arbitrary Cauchy sequence. We need to prove that it is convergent. For $\varepsilon = 1/2^k$ let us choose N_k such that $||x_n - x_m|| \le 1/2^k$ if $n, m \ge N_k$. We can assume that $N_{k+1} > N_k$. Consider the sequence $y_k = x_{N_{k+1}} - x_{N_k}$. We claim that this sequence is absolutely summable. Indeed,

$$||y_k|| = ||x_{N_{k+1}} - x_{N_k}|| \le \frac{1}{2^k},$$

thus

$$\sum_{k=1}^{\infty} \|y_k\| \le \sum_{k=1}^{\infty} \frac{1}{2^k} = 1 < \infty.$$

Our assumption was that every absolutely summable sequence is summable, so (y_k) is summable, that is, (x_{N_k}) is convergent. We proved that the Cauchy sequence x_1, x_2, \ldots has a convergent subsequence. It follows that (x_n) is convergent, too.