Functional Analysis, BSM, Spring 2012

Exercise sheet: bounded linear functionals and dual spaces

Let $(X,\|\cdot\|)$ be a normed space over $F=\mathbb{R}$ or \mathbb{C}. A map $\Lambda: X \rightarrow F$ is called a linear functional if $\Lambda(x+y)=\Lambda x+\Lambda y$ and $\Lambda(\alpha x)=\alpha \Lambda x$ for any $x, y \in X ; \alpha \in F$. The (operator) norm of Λ is defined as follows:

$$
\|\Lambda\| \stackrel{\text { def }}{=} \sup _{x \neq 0} \frac{|\Lambda x|}{\|x\|}=\sup _{\|x\|=1}|\Lambda x| .
$$

A linear functional Λ is said to be bounded if $\|\Lambda\|<\infty$. The space of all bounded linear functionals on X is called the dual space of X and it is denoted by X^{*}. Equipped with the operator norm, X^{*} is a Banach space.

Let $1<p, q<\infty$ with $\frac{1}{p}+\frac{1}{q}=1$. We proved that $\ell_{p}^{*}=\ell_{q}$. By that we mean the following: every $\Lambda \in \ell_{p}^{*}$ is of the form Λ_{y} for some $y=\left(\beta_{1}, \beta_{2}, \ldots\right) \in \ell_{q}$, where Λ_{y} is the bounded linear functional on ℓ_{p} for which

$$
\Lambda_{y}\left(\alpha_{1}, \alpha_{2}, \ldots\right)=\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}+\ldots
$$

Moreover, the operator norm $\left\|\Lambda_{y}\right\|$ is equal to $\|y\|_{q}=\sqrt[q]{\sum_{i=1}^{\infty}\left|\beta_{i}\right|^{q}}$.

1. W3P1. (5 points) Consider the following linear functional on ℓ_{3} :

$$
\Lambda:\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right) \mapsto \alpha_{1}+\frac{1}{4} \alpha_{2}+\frac{1}{4^{2}} \alpha_{3}+\ldots
$$

Determine $\|\Lambda\|$.
2. Let Λ be a nonzero bounded linear functional on a real normed space X, and let $y \in X \backslash \operatorname{ker} \Lambda$. Prove that any vector $z \in X$ can be written as $x+\alpha y$ with $x \in \operatorname{ker} \Lambda$ and $\alpha \in \mathbb{R}$.
3. Let $1<p<\infty$. Prove that for any $\Lambda \in \ell_{p}^{*}$ there exists $x \in \ell_{p}$ with

$$
\frac{|\Lambda x|}{\|x\|_{p}}=\|\Lambda\| .
$$

4. Show that the statement of the previous exercise does not hold for $p=1$: find a bounded linear functional $\Lambda \in \ell_{1}^{*}$ such that $\frac{|\Lambda x|}{\|x\|_{1}}<\|\Lambda\|$ for all nonzero $x \in \ell_{1}$.
5. Prove that $\ell_{1}^{*}=\ell_{\infty}$.
(You have to prove that for any $y \in \ell_{\infty}, \Lambda_{y}$ is a bounded linear functional on ℓ_{1} with $\left\|\Lambda_{y}\right\|=\|y\|_{\infty}$. You also have to prove that any $\Lambda \in \ell_{1}^{*}$ is equal to Λ_{y} for some $y \in \ell_{\infty}$.)
6. W3P2. (5 points) Let us consider the space

$$
c_{0} \stackrel{\text { def }}{=}\left\{\left(\alpha_{1}, \alpha_{2}, \ldots\right): \alpha_{n} \in \mathbb{C} \text { and } \lim _{n \rightarrow \infty} \alpha_{n}=0\right\} \text { with the } \ell_{\infty} \text {-norm }\left\|\left(\alpha_{1}, \alpha_{2}, \ldots\right)\right\|_{\infty}=\sup _{n}\left|\alpha_{n}\right| .
$$

Show that c_{0} is separable.
7. W3P3. (5 points) Find a bounded linear functional $\Lambda \in c_{0}^{*}$ such that $\frac{|\Lambda x|}{\|x\|_{\infty}}<\|\Lambda\|$ for all nonzero $x \in c_{0}$.
8. W3P4. (10 points) Prove that $c_{0}^{*}=\ell_{1}$.
(You have to prove that for any $y \in \ell_{1}, \Lambda_{y}$ is a bounded linear functional on c_{0} with $\left\|\Lambda_{y}\right\|=\|y\|_{1}$. You also have to prove that any $\Lambda \in c_{0}^{*}$ is equal to Λ_{y} for some $y \in \ell_{1}$.)
9. W3P5. (5 points) Let X be a real normed space and suppose that for some $\Lambda_{1}, \Lambda_{2} \in X^{*}$ we have $\operatorname{ker} \Lambda_{1} \subset \operatorname{ker} \Lambda_{2}$. Prove that $\Lambda_{2}=\lambda \Lambda_{1}$ for some $\lambda \in \mathbb{R}$.
10. Let $C[0,1]$ be the space of continuous $[0,1] \rightarrow \mathbb{R}$ functions with the sup norm:

$$
\|f\|=\sup _{x \in[0,1]}|f(x)|
$$

Construct as many bounded linear functionals on this space as you can. Determine their operator norms.
11.* W3P6. (12 points) Let $1<p<\infty$. Use the Hölder inequality to prove that $\|x+y\|_{p} \leq\|x\|_{p}+\|y\|_{p}$ for any $x, y \in \ell_{p}$.

Solutions can be found on: www.renyi.hu/ ${ }^{\text {harangi/bsm/ }}$

