Functional Analysis, BSM, Spring 2012
Exercise sheet: bounded linear functionals and dual spaces
Solutions

1. With p =3 and ¢ = 3/2 we have 1/p+1/¢ = 1. Let
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We need to determine the operator norm of A, € ¢3:

1Al = llgls = (i (j)) - (i ;) - (;) - L

n=0 n=0

y=(1

2. Suppose that z has the desired decomposition z = x + ay. Using x € ker A we get that
Az = Az + Alay) = 0+ aAy = aly.

Note that Ay # 0, because y ¢ ker A. Thus o must be Az/Ay, and x must be z — ay.
Now pick an arbitrary z € X. Let « = Az/Ay and z = z — ay. All we have to prove is that = € ker A,
which is clear, since

Ax:Az—aAy:Az—ﬁAyzo.
Ay

3. We actually proved this when we proved £; = ¢,. Any A € (} is equal to A, for some y = (81, B2,...) € {,.
We also know that

1Ayl = llylls =

In the proof we used the following vector x € £,:

= (|86, B2 Ba, .. .) .
For this particular = we obtained that

aq
lll> = (llylla)”

and
Az = (lylly)*
. It follows that A,z
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==yl = llyllg = 1A ]l-
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and consider the functional A, € ¢7. For z = (a1, a9,...) € {1:
oo

<3 Jail = Jll.

=1

4. Let
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oo

|Ayz| = Z

=1

1+1

Q;

And equality holds only if each «; is 0, that is, = 0. Thus for any nonzero x € ¢; we have
|Ayz|

[E4 5t

<1. (1)

So it remains to prove that the operator norm of A, is 1. It follows from (1) that ||Ay|] < 1. And for
en = (0,0,...,0,1,0,0,...) we have
|Ayen‘ . n
lenlli  n+1

?

which tends to 1 as n tends to infinity.



5. First let y = (81, B2, . ..) € Lo be fixed and let
Ay(ar,az,...) =a1f +azf + ... (2)
If x = (a1, 2,...) € £1, then

oo o0
Z|ai3¢\ < ||yHooZ lai| < [[yllscllz]lr < o
i=1 i=1

Thus the sum on the right-hand side of (2) is absolutely convergent, so it is convergent. It means that A,
defines a functional on ¢;. This functional is clearly linear; it is also bounded, because

oo
> B
i=1

This also implies that ||Ay|| < ||y|/e. To prove that ||A,]| = ||y|loc, notice that for e, = (0,0,...,0,1,0,0,...)
we have

|Ayz| =

oo
< Joisil < Iyl
=1

|Ayen

llenly

= |ﬁn|7
the supremum of which is, by definition, ||y||c-
It remains to show that any A € ¢] is equal to A, for some y € £o,. Let

def
ﬁn = Ae’ru

and consider the vector y = (01, B2, ...). We claim that y € {o and A = A,. Since |3, | = [Aey| < ||All|len]1 =
[IAll, (8n) is a bounded sequence (with bound [|A]]). Now let & be an arbitrary vector (ay, ag,...) in ¢;. We
need to show that Az = Ayz. Let x,, be (a1, 2,...,2,,0,0,...). It is easy to see that

l|xn — 2|1 — 0 as n — oc.

In other words, x,, — x in ¢;. Since both A and A, are bounded linear functionals, it follows that Az, — Az
and Ayx, = Ayz. However, Az, = Ayx, for each n:

Az, = iA(aiei) = iai/\ei = iaiﬁi = Ayxp.
i=1 i=1 i=1

Thus Az must be equal to Ayz, too. We are done.

6. Let S be the set consisting of the points
(a1 + bii, as + boi, ..., ar + bx1,0,0,0,...),

where k is a positive integer, and a;,b; ; 1 < j < k are rational numbers. This set is clearly countable. We
claim that it is dense in ¢g. We need to show that for any = = (a1, @s,...) € ¢p and any £ > 0 there exists a
point 2’ of the above form with ||z — 2/||oc < €. Since a,, — o0, there exists N such that |a,| < € for n > N.
Let k = N and for any j < N let us choose rational numbers a;,b; such that |a; — (a; + bji)| < e. It is clear
that

= (a1 + bii,as + boi, ... ,an —‘y-bNi,0,0,0,...)

has the desired property.

7. Let y = (1/2,1/4,1/8,...) and consider the linear functional A,. For z = (a1, as,...):

1 1
|Ayz| = P! +oast . < (124 1/44+ . ) ||12]lco = |2 ]|0o-

4
Equality holds if and only if a; = ag = .... If & € ¢ \ {0}, then this cannot be the case. Thus for any nonzero
T € ¢y we have
1A,] <1
[[]loo
So it remains to show that ||A,| = 1. We have already seen that ||A,|| < 1. For s, = (1,1,...,1,0,0,...) € ¢o:
Aysn| 1 1 1 1
=t F—=1——,
Isnllec 2 4 2n 2n

which tends to 1 as n — oo.



8. First let y = (B4, Ba,...) € 1 be fixed and let
Ay(ar,ao,...) =181 +azfa+ ... (3)
If v = (a1, ,...) € g, then
S laiil < lelloo 3161 < leloollyll < oo.
i=1 i=1

Thus the sum on the right-hand side of (3) is absolutely convergent, so it is convergent. It means that A,
defines a functional on ¢y. This functional is clearly linear; it is also bounded, because

[Ayz| = | <D laiBil < llzllsollyl-
i=1
This also implies that ||Ay|| < ||y|[1. To prove that ||Ay|| = ||ly|l1, consider the following vector for each n:
e (B B,
[Bal 182l 1Bl

Notice that 3;/|3;| are all complex numbers with unit length (if 3; = 0, then pick any complex number of unit

length). So ||sp|le = 1.
|Aysn| B:B; |Bi]? -
. Z B Z B = 218
=1

[l 00

which tends to |ly||1 as n — oc.
It remains to show that any A € ¢j is equal to A, for some y € £;. Let

def
B = Aen,

and consider the vector y = (51, B2,...). We claim that y € ¢;. Let s,, be defined as above. Then

:ZWJ-
i=1

Since |[spllec = 1, we have > "1 | |B;| < ||A|| for each n. It follows that > .= |B;] < [|A]. Thus y € ¢; as we
wanted. It means that A, is a bounded linear functional on cg; we claim that A = A,. Let z be an arbitrary
vector (aq,aw,...) in ¢1, and let x,, be (ay, @s,...,®,,0,0,...). Since x € ¢y, a,, — 0, thus

|2 — z|loc — 0 as n — oco.

In other words, =, — « in ¢o. Since both A and A, are bounded linear functionals on ¢, it follows that
Az, = Az and Ayz, — Ayxz. However, Az, = Ayz, for each n:

Al‘n = ZA(O[ZBZ) = Z OZZ‘AGZ‘ = Zaiﬂi = Ay.i?n
i=1 i=1 i=1
Thus Az must be equal to Ayz, too. We are done.
9. If ker A; is the whole space X, then so is ker A, thus Ay = Ay = 0, we are done.
If ker A; # X, then pick an arbitrary y € X \ker A;. Let A\; = A1y and Ay = Agy. We claim that Ay = AA4

with A = Ao /1. Exercise 2 says that any 2z € X can be written as z + ay, where o € R and x € ker A;. Notice
that then x is also in ker Ao, so Ajz = Asx = 0. It follows that

Aoz = Aoz + ala(y) =04+ ada = A (0+ aX) = A(A 1z 4+ a1 (y)) = Ay 2.



10. Pick a finite number of points in the interval: x1,...,2; € [0,1]; and let a1,...,a; be arbitrary real
numbers. Then

k
Af = Zaz‘f(%)
i=1

defines a bounded linear operator on C[0,1] with ||A] = Y7, o]
Another bounded linear functional:

1
Af = /0 f(z) de,

the operator norm of which is 1.
A generalization of the previous example: fix a continuous function % : [0,1] — R and let

Af:/o f(@)k(z) da.

The norm of this functional is fol |k(z)| dx.
A common generalization of all the above examples is the following. Let ¢ : [0,1] — R be a function of
bounded variation; consider the Riemann-Stieltjes integral with respect to g:

Af = / f(z) dg(z).

The norm of A is the total variation V' (g) of g. (Actually, it can be shown that all bounded linear functionals
on C[0,1] are of this form.)

11.* Let us replace each coordinate of  and y with its absolute value. It clearly suffices to prove the statement
for these vectors. Thus we can assume that in each coordinate we have nonnegative real numbers.

We have seen earlier that if z,y are in £, then so is z + y. Let ¢ be such that 1/p+ 1/¢ = 1. The key
observation is the following: since (p — 1)g = p, the vector (z + y)P~! is in £, its £g-norm is ||z + y|>~'. We
apply the Hélder inequality to x € £, and (z +y)P~! € £, as well as to y € £, and (z +y)P~! € {,:

lz(z + )"~ < flollplle +ylp~

and
ly(@ + )" < llyllplle+yllh™"

It follows that
Iz +yllp = Iz +y)Plh < llz@@+ )"+ v+ )P < (el + lyllp) 12+ yllz

which implies that ||z + y|[, < [|z[, + ||yl



