
Functional Analysis, BSM, Spring 2012
Exercise sheet: bounded linear functionals and dual spaces

Solutions

1. With p = 3 and q = 3/2 we have 1/p+ 1/q = 1. Let
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We need to determine the operator norm of Λy ∈ `∗3:
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2. Suppose that z has the desired decomposition z = x+ αy. Using x ∈ ker Λ we get that

Λz = Λx+ Λ(αy) = 0 + αΛy = αΛy.

Note that Λy 6= 0, because y /∈ ker Λ. Thus α must be Λz/Λy, and x must be z − αy.
Now pick an arbitrary z ∈ X. Let α = Λz/Λy and x = z − αy. All we have to prove is that x ∈ ker Λ,

which is clear, since

Λx = Λz − αΛy = Λz − Λz

Λy
Λy = 0.

3. We actually proved this when we proved `∗p = `q. Any Λ ∈ `∗p is equal to Λy for some y = (β1, β2, . . .) ∈ `q.
We also know that

‖Λy‖ = ‖y‖q = q

√√√√ ∞∑
i=1

|βi|q.

In the proof we used the following vector x ∈ `p:

x =
(
|β1|q−2β̄1, |β2|q−2β̄2, . . .

)
.

For this particular x we obtained that
‖x‖p = (‖y‖q)

q
p

and
|Λyx| = (‖y‖q)

q

. It follows that
|Λyx|
‖x‖p

= (‖y‖q)
q− q

p = ‖y‖q = ‖Λy‖.

4. Let
y =

(
1

2
,

2

3
,

3

4
,

4

5
, . . .

)
and consider the functional Λy ∈ `∗1. For x = (α1, α2, . . .) ∈ `1:

|Λyx| =
∞∑
i=1

∣∣∣∣ i

i+ 1
αi

∣∣∣∣ ≤ ∞∑
i=1

|αi| = ‖x‖1.

And equality holds only if each αi is 0, that is, x = 0. Thus for any nonzero x ∈ `1 we have

|Λyx|
‖x‖1

< 1. (1)

So it remains to prove that the operator norm of Λy is 1. It follows from (1) that ‖Λy‖ ≤ 1. And for
en = (0, 0, . . . , 0, 1, 0, 0, . . .) we have

|Λyen|
‖en‖1

=
n

n+ 1
,

which tends to 1 as n tends to infinity.



5. First let y = (β1, β2, . . .) ∈ `∞ be fixed and let

Λy(α1, α2, . . .) = α1β1 + α2β2 + . . . (2)

If x = (α1, α2, . . .) ∈ `1, then
∞∑
i=1

|αiβi| ≤ ‖y‖∞
∞∑
i=1

|αi| ≤ ‖y‖∞‖x‖1 <∞.

Thus the sum on the right-hand side of (2) is absolutely convergent, so it is convergent. It means that Λy

defines a functional on `1. This functional is clearly linear; it is also bounded, because

|Λyx| =

∣∣∣∣∣
∞∑
i=1

αiβi

∣∣∣∣∣ ≤
∞∑
i=1

|αiβi| ≤ ‖y‖∞‖x‖1.

This also implies that ‖Λy‖ ≤ ‖y‖∞. To prove that ‖Λy‖ = ‖y‖∞, notice that for en = (0, 0, . . . , 0, 1, 0, 0, . . .)
we have

|Λyen|
‖en‖1

= |βn|,

the supremum of which is, by definition, ‖y‖∞.
It remains to show that any Λ ∈ `∗1 is equal to Λy for some y ∈ `∞. Let

βn
def
= Λen,

and consider the vector y = (β1, β2, . . .). We claim that y ∈ `∞ and Λ = Λy. Since |βn| = |Λen| ≤ ‖Λ‖‖en‖1 =
‖Λ‖, (βn) is a bounded sequence (with bound ‖Λ‖). Now let x be an arbitrary vector (α1, α2, . . .) in `1. We
need to show that Λx = Λyx. Let xn be (α1, α2, . . . , αn, 0, 0, . . .). It is easy to see that

‖xn − x‖1 → 0 as n→∞.

In other words, xn → x in `1. Since both Λ and Λy are bounded linear functionals, it follows that Λxn → Λx
and Λyxn → Λyx. However, Λxn = Λyxn for each n:

Λxn =

n∑
i=1

Λ(αiei) =

n∑
i=1

αiΛei =

n∑
i=1

αiβi = Λyxn.

Thus Λx must be equal to Λyx, too. We are done.

6. Let S be the set consisting of the points

(a1 + b1i, a2 + b2i, . . . , ak + bki, 0, 0, 0, . . .),

where k is a positive integer, and aj , bj ; 1 ≤ j ≤ k are rational numbers. This set is clearly countable. We
claim that it is dense in c0. We need to show that for any x = (α1, α2, . . .) ∈ c0 and any ε > 0 there exists a
point x′ of the above form with ‖x− x′‖∞ ≤ ε. Since αn →∞, there exists N such that |αn| < ε for n ≥ N .
Let k = N and for any j ≤ N let us choose rational numbers aj , bj such that |αj − (aj + bji)| < ε. It is clear
that

x′ = (a1 + b1i, a2 + b2i, . . . , aN + bN i, 0, 0, 0, . . .)

has the desired property.

7. Let y = (1/2, 1/4, 1/8, . . .) and consider the linear functional Λy. For x = (α1, α2, . . .):

|Λyx| =
∣∣∣∣12α1 +

1

4
α2 + . . .

∣∣∣∣ ≤ (1/2 + 1/4 + . . .)‖x‖∞ = ‖x‖∞.

Equality holds if and only if α1 = α2 = . . .. If x ∈ c0 \ {0}, then this cannot be the case. Thus for any nonzero
x ∈ c0 we have

|Λyx|
‖x‖∞

< 1.

So it remains to show that ‖Λy‖ = 1. We have already seen that ‖Λy‖ ≤ 1. For sn = (1, 1, . . . , 1, 0, 0, . . .) ∈ c0:

|Λysn|
‖sn‖∞

=
1

2
+

1

4
+ . . .+

1

2n
= 1− 1

2n
,

which tends to 1 as n→∞.



8. First let y = (β1, β2, . . .) ∈ `1 be fixed and let

Λy(α1, α2, . . .) = α1β1 + α2β2 + . . . (3)

If x = (α1, α2, . . .) ∈ c0, then

∞∑
i=1

|αiβi| ≤ ‖x‖∞
∞∑
i=1

|βi| ≤ ‖x‖∞‖y‖1 <∞.

Thus the sum on the right-hand side of (3) is absolutely convergent, so it is convergent. It means that Λy

defines a functional on c0. This functional is clearly linear; it is also bounded, because

|Λyx| =

∣∣∣∣∣
∞∑
i=1

αiβi

∣∣∣∣∣ ≤
∞∑
i=1

|αiβi| ≤ ‖x‖∞‖y‖1.

This also implies that ‖Λy‖ ≤ ‖y‖1. To prove that ‖Λy‖ = ‖y‖1, consider the following vector for each n:

sn =

(
β̄1
|β1|

,
β̄2
|β2|

, . . . ,
β̄n
|βn|

, 0, 0, . . .

)
.

Notice that β̄i/|βi| are all complex numbers with unit length (if βi = 0, then pick any complex number of unit
length). So ‖sn‖∞ = 1.

|Λysn|
‖sn‖∞

=

n∑
i=1

βiβ̄i
|βi|

=

n∑
i=1

|βi|2

|βi|
=

n∑
i=1

|βi|,

which tends to ‖y‖1 as n→∞.
It remains to show that any Λ ∈ c∗0 is equal to Λy for some y ∈ `1. Let

βn
def
= Λen,

and consider the vector y = (β1, β2, . . .). We claim that y ∈ `1. Let sn be defined as above. Then

Λsn =

n∑
i=1

|βi|.

Since ‖sn‖∞ = 1, we have
∑n

i=1 |βi| ≤ ‖Λ‖ for each n. It follows that
∑∞

i=1 |βi| ≤ ‖Λ‖. Thus y ∈ `1 as we
wanted. It means that Λy is a bounded linear functional on c0; we claim that Λ = Λy. Let x be an arbitrary
vector (α1, α2, . . .) in `1, and let xn be (α1, α2, . . . , αn, 0, 0, . . .). Since x ∈ c0, αn → 0, thus

‖xn − x‖∞ → 0 as n→∞.

In other words, xn → x in c0. Since both Λ and Λy are bounded linear functionals on c0, it follows that
Λxn → Λx and Λyxn → Λyx. However, Λxn = Λyxn for each n:

Λxn =

n∑
i=1

Λ(αiei) =

n∑
i=1

αiΛei =

n∑
i=1

αiβi = Λyxn.

Thus Λx must be equal to Λyx, too. We are done.

9. If ker Λ1 is the whole space X, then so is ker Λ2, thus Λ1 = Λ2 = 0, we are done.
If ker Λ1 6= X, then pick an arbitrary y ∈ X \ker Λ1. Let λ1 = Λ1y and λ2 = Λ2y. We claim that Λ2 = λΛ1

with λ = λ2/λ1. Exercise 2 says that any z ∈ X can be written as x+αy, where α ∈ R and x ∈ ker Λ1. Notice
that then x is also in ker Λ2, so Λ1x = Λ2x = 0. It follows that

Λ2z = Λ2x+ αΛ2(y) = 0 + αλ2 = λ (0 + αλ1) = λ (Λ1x+ αΛ1(y)) = λΛ1z.



10. Pick a finite number of points in the interval: x1, . . . , xk ∈ [0, 1]; and let α1, . . . , αk be arbitrary real
numbers. Then

Λf =

k∑
i=1

αif(xi)

defines a bounded linear operator on C[0, 1] with ‖Λ‖ =
∑n

i=1 |αi|.
Another bounded linear functional:

Λf =

∫ 1

0

f(x) dx,

the operator norm of which is 1.
A generalization of the previous example: fix a continuous function k : [0, 1]→ R and let

Λf =

∫ 1

0

f(x)k(x) dx.

The norm of this functional is
∫ 1

0
|k(x)|dx.

A common generalization of all the above examples is the following. Let g : [0, 1] → R be a function of
bounded variation; consider the Riemann-Stieltjes integral with respect to g:

Λf =

∫ 1

0

f(x) dg(x).

The norm of Λ is the total variation V (g) of g. (Actually, it can be shown that all bounded linear functionals
on C[0, 1] are of this form.)

11.* Let us replace each coordinate of x and y with its absolute value. It clearly suffices to prove the statement
for these vectors. Thus we can assume that in each coordinate we have nonnegative real numbers.

We have seen earlier that if x, y are in `p, then so is x + y. Let q be such that 1/p + 1/q = 1. The key
observation is the following: since (p − 1)q = p, the vector (x + y)p−1 is in `q, its `q-norm is ‖x + y‖p−1p . We
apply the Hölder inequality to x ∈ `p and (x+ y)p−1 ∈ `q as well as to y ∈ `p and (x+ y)p−1 ∈ `q:

‖x(x+ y)p−1‖1 ≤ ‖x‖p‖x+ y‖p−1p

and
‖y(x+ y)p−1‖1 ≤ ‖y‖p‖x+ y‖p−1p .

It follows that

‖x+ y‖pp = ‖(x+ y)p‖1 ≤ ‖x(x+ y)p−1‖1 + ‖y(x+ y)p−1‖1 ≤ (‖x‖p + ‖y‖p) ‖x+ y‖p−1p ,

which implies that ‖x+ y‖p ≤ ‖x‖p + ‖y‖p.


