Functional Analysis, BSM, Spring 2012

Exercise sheet: extension of functionals and the Hahn-Banach theorem

Let $(X, \|\cdot\|)$ be a (real or complex) normed space and let $Y \leq X$ be a linear subspace. Note that Y is also a normed space with $\|\cdot\|$. The Hahn-Banach theorem states that for any $\Lambda \in Y^*$ there exists $\tilde{\Lambda} \in X^*$ such that $\tilde{\Lambda}$ is an extension of Λ ($\tilde{\Lambda}y = \Lambda y$ for any $y \in Y$) and $\|\tilde{\Lambda}\| = \|\Lambda\|$.

1. Let x, y be distinct vectors in a normed space X. Use the Hahn-Banach theorem to show that there exists $\Lambda \in X^*$ for which $\Lambda x \neq \Lambda y$.

2. W3P7. (5 points) Use the Hahn-Banach theorem to prove that for any nonzero element x_0 of a normed space X there exists $\Lambda \in X^*$ such that $\Lambda(x_0) = ||x_0||$ and $||\Lambda|| = 1$.

3. W3P8. (5 points) Consider the following linear subspace of the Banach space ℓ_{∞} :

 $M = \{(\alpha_1, \alpha_2, \ldots) : \alpha_i \in \mathbb{C} \text{ and } \alpha_i = 0 \text{ for all but finitely many } i's \}.$

Show that M is a linear subspace of ℓ_{∞} . Is it closed? What is its closure?

4. Let M be as in the previous exercise. Use the Hahn-Banach theorem to prove the existence of a bounded linear functional $\Lambda \in \ell_{\infty}^*$ for which $\Lambda x = 0$ for any $x \in M$ and

$$\Lambda(1,1,1,\ldots)=1.$$

5. Prove that $\ell_{\infty}^* \neq \ell_1$. In other words, find $\Lambda \in \ell_{\infty}^*$ such that $\Lambda \neq \Lambda_y$ for any $y \in \ell_1$.

6. Prove the next theorem by adapting the proof of the original Hahn-Banach theorem.

The generalized Hahn-Banach theorem. Let V be a real vector space and let $p: V \to \mathbb{R}$ be a sublinear functional, that is,

 $p(x+y) \leq p(x) + p(y)$ for any $x, y \in V$ and $p(\alpha x) = \alpha p(x)$ for any $x \in V$ and **positive** real α .

Let $M \leq V$ be a linear subspace with a linear functional $\Lambda: M \to \mathbb{R}$ such that

$$\Lambda y \leq p(y)$$
 for any $y \in M$.

Then Λ can be extended to a linear functional $\widetilde{\Lambda}: V \to \mathbb{R}$ such that

$$\Lambda y = \Lambda y$$
 for any $y \in M$ and $\Lambda x \leq p(x)$ for any $x \in V$.

7. Show that the *real case* of the original Hahn-Banach theorem follows from the generalized Hahn-Banach theorem.

8. W3P9. (12 points) Let ℓ_{∞} denote this time the **real** vector space of bounded sequences of real numbers. Use the generalized Hahn-Banach theorem to prove the existence of a linear functional $\Lambda : \ell_{\infty} \to \mathbb{R}$ such that for any $x = (\alpha_1, \alpha_2, \ldots) \in \ell_{\infty}$ it holds that

$$\liminf_{n \to \infty} \alpha_n \le \Lambda x \le \limsup_{n \to \infty} \alpha_n.$$

Show that such a linear functional is necessarily bounded (with respect to the ℓ_{∞} norm). Also show that such a functional is different from any Λ_y ; $y \in \ell_1$.

9. W3P10. (12 points) Let $(X, \|\cdot\|)$ be a Banach space and let Y be a closed linear subspace, $Y \neq X$. Prove that for any $\varepsilon > 0$ there exists $e \in X$ such that $\|e\| = 1$ and $d(e, Y) > 1 - \varepsilon$, where d(e, Y) denotes the distance of e and Y, that is, $\inf_{y \in Y} \|e - y\|$.

Solutions can be found on: www.renyi.hu/~harangi/bsm/