
Functional Analysis, BSM, Spring 2012
Exercise sheet: extension of functionals and the Hahn-Banach theorem

Solutions

1. Let X be over the field F (R or C). Let z = x − y. We need to find a functional Λ ∈ X∗ for which
Λz = Λx − Λy 6= 0. We can easily define such a bounded linear functional on the one-dimensional linear
subspace spanned by z, Y = {αz : α ∈ F}. Namely, let

Λ(αz) = α.

It is easy to see that Λ is a linear functional on Y with Λz = 1 6= 0 and ‖Λ‖ = 1/‖z‖. By Hahn-Banach
theorem there exists a linear functional Λ̃ on X with the same properties.

2. Consider the linear subspace spanned by x0: Y = {αx0 : α ∈ F}. We define a linear functional Λ on Y by

Λ(αx0) = α‖x0‖.

It is clear that Λx0 = ‖x0‖ and ‖Λ‖ = 1. By Hahn-Banach theorem there exists a linear functional Λ̃ on X
with the same properties.

3. Clearly, M ⊂ `∞. To see that M is a linear subspace, we have to check two things: x + y ∈ M for any
x, y ∈M and αx ∈M for any α ∈ C, x ∈M . Both are clear in this case.

The set M is not a closed set in `∞, since the vectors

xn = (1, 1/2, 1/3, . . . , 1/n, 0, 0, . . .)

are all in M , but they converge (in `∞-norm) to

x = (1, 1/2, 1/3, 1/4, . . .),

which is not in M .
We claim that he closure of M , cl(M) is

c0 =
{

(α1, α2, . . .) : αn ∈ C and lim
n→∞

αn = 0
}
.

On the one hand, we need to show that for any x ∈ c0 there exists a sequence (xn) inM such that xn converges
to x (in the `∞-norm). Pick any x = (α1, α2, . . .) ∈ c0. The vectors

xn = (α1, α2, . . . , αn, 0, 0, . . .)

are all in M and
‖x− xn‖∞ = ‖(0, 0, . . . , 0, αn+1, αn+2, . . .)‖∞ = sup

i≥n+1
|αi|,

which goes to 0 as n→∞, because αn → 0.
On the other hand, we need that for any convergent sequence (xn) with xn ∈ M , the limit point x lies in

c0. Let x = (α1, α2, . . .); we have to show that αi → 0 as i→∞. Let ε > 0 be arbitrary. There exists n0 such
that

‖x− xn0‖∞ < ε.

However, xn0 is in M , so there exists N such that after the N -th coordinate xn0 has only zeros. Since the
`∞-distance of x and xn0 is less than ε, it follows that for i > N we have |αi| < ε. We are done.



4. Set e = (1, 1, . . .) and let Y be the linear subspace spanned by M and e:

Y = {x+ αe : x ∈M ;α ∈ F} .

First we define Λ on this subspace:
Λ(x+ αe) = α.

This is clearly a linear functional on Y . Is it bounded? We claim that

|Λ(x+ αe)|
‖x+ αe‖∞

=
|α|

‖x+ αe‖∞
≤ 1,

which would imply that ‖Λ‖ ≤ 1. (In fact, ‖Λ‖ = 1.) We need that ‖x + αe‖∞ ≥ |α|. We know that x ∈ M ,
so it is 0 in all but finitely many coordinates. It means that x + αe is α in all but finitely many coordinates.
So the `∞-norm of x+ αe is at least |α|, and this is what we wanted to prove.

So Λ is a bounded linear functional on Y with the desired properties. By Hahn-Banach theorem we can
extend it to a bounded linear functional on `∞.

5. We claim that the bounded linear operator Λ ∈ `∗∞ of the previous exercise has the property that Λ 6= Λy

for any y ∈ `1. We prove this by contradiction. Assume that Λ = Λy for some y = (β1, β2, . . .) ∈ `1. Let
en = (0, 0, . . . , 0, 1, 0, 0, . . .). Note that en ∈M for all n. So

Λen = 0.

On the other hand,
Λen = Λyen = βn.

We conclude that βn = 0 for all n. In other words, y = 0. Thus Λ = Λ0 is the constant zero functional, but
this contradicts Λ(1, 1, . . .) = 1.

6. Let z ∈ V \M . We prove that Λ can be extended to a linear functional Λ1 on

M1 = {y + αz : y ∈M ;α ∈ R}.

The rest of the proof (the Zorn’s lemma argument) goes the same way as in the original theorem.
If Λ1 extends Λ, then

Λ1(y + αz) = Λy + αΛ1z.

So the value of Λ1z determines Λ1. We need to choose Λ1z such that

Λy + αΛ1z ≤ p(y + αz)

for any y ∈M and α ∈ R.
If α = 0, then we get back our assumption Λy ≤ p(y).
If α > 0, then after dividing by α and rearranging we get that

Λ1z ≤ p
( y
α

+ z
)
− Λ

( y
α

)
.

If α > 0, then after dividing by −α and rearranging we get that

Λ1z ≥ −p
(

y

−α
− z
)

+ Λ

(
y

−α

)
.

(We needed to distinguish these cases, because p(αx) = αp(x) holds only for positive α.)
So we need to choose Λ1z in such a way that

inf
y′∈M

p (y′ + z)− Λy′ ≥ Λ1z ≥ sup
y′′∈M

−p (y′′ − z) + Λy′′.

We can do that if and only if for any y′, y′′ ∈M it holds that

p (y′ + z)− Λy′ ≥ −p (y′′ − z) + Λy′′ ⇔ p (y′ + z) + p (y′′ − z) ≥ Λ (y′ + y′′) .

Using the sublinearity of p and the assumption that p(y) ≥ Λy for y ∈M :

p (y′ + z) + p (y′′ − z) ≥ p ((y′ + z) + (y′′ − z)) = p(y′ + y′′) ≥ Λ(y′ + y′′).



7. Let Λ ∈ Y ∗. We can assume without loss of generality that ‖Λ‖ = 1. We will use the generalized Hahn-
Banach theorem with p(x)

def
= ‖x‖. This is clearly a sublinear functional (it satisfies both p(x+y) ≤ p(x)+p(y)

and p(αx) = αp(x) for positive α). Moreover, Λy ≤ |Λy| ≤ ‖Λ‖‖y‖ = ‖y‖, so Λy ≤ p(y) for any y ∈ Y . Thus
all the conditions of the generalized Hahn-Banach theorem are satisfied; there exists a linear functional Λ̃ on
X such that Λ̃ extends Λ and Λ̃x ≤ p(x) = ‖x‖. Since Λ̃ is an extension, it is clear that ‖Λ̃‖ ≥ ‖Λ‖. We need
to show ‖Λ̃‖ ≤ ‖Λ‖ = 1, that is,

|Λ̃x| ≤ ‖x‖. (1)

We already know that
Λ̃x ≤ ‖x‖. (2)

Using this for −x instead of x we get that

−Λ̃x = Λ̃(−x) ≤ ‖ − x‖ = ‖x‖.

It follows that
Λ̃x ≥ −‖x‖.

Combining this with (2) we get (1).

8. It is easy to see that
p(α1, α2, . . .)

def
= lim sup

n→∞
αn

is a sublinear functional on `∞. We use the generalized Hahn-Banach theorem in the special case when M = 0.
In this special case the theorem only states that there exists some linear functional Λ on `∞ with

Λ(α1, α2, . . .) ≤ lim sup
n→∞

αn. (3)

We claim that such a Λ necessarily satisfies the other desired inequality

Λ(α1, α2, . . .) ≥ lim inf
n→∞

αn. (4)

We just need to use (3) for the vector (−α1,−α2, . . .):

−Λ(α1, α2, . . .) = Λ(−α1,−α2, . . .) ≤ lim sup
n→∞

−αn = − lim inf
n→∞

αn,

which implies (4).
To show that Λ is bounded, we notice that

lim sup
n→∞

αn ≤ ‖(α1, α2, . . .)‖∞ and lim inf
n→∞

αn ≥ −‖(α1, α2, . . .)‖∞.

It follows that |Λx| ≤ ‖x‖ for any x ∈ `∞, thus ‖Λ‖ ≤ 1.
Note that such a bounded linear functional Λ has the properties that Λy = 0 for y ∈M and Λ(1, 1, . . .) = 1

(see Exercise 4). So the same argument as in Exercise 5 shows that Λ is different from any Λy; y ∈ `1.

9. Pick an arbitrary vector x outside Y . Since Y is closed, d(x, Y ) > 0 (otherwise there would be a sequence
yn ∈ Y with ‖yn − x‖ → 0, but Y is closed, so this would mean that x also lies in Y ).

Let δ > 0. Since d(x, Y ) is the infimum of ‖x− y‖, there exists y0 ∈ Y such that

‖x− y0‖ ≤ (1 + δ)d(x, Y ).

Let
e

def
=

x− y0
‖x− y0‖

.

Clearly, ‖e‖ = 1. For the distance of e and and an arbitrary y ∈ Y we have

‖e− y‖ =

∥∥∥∥ x− y0
‖x− y0‖

− y
∥∥∥∥ =

1

‖x− y0‖

∥∥∥∥∥∥∥x− y0 − ‖x− y0‖ · y︸ ︷︷ ︸
∈Y

∥∥∥∥∥∥∥ ≥
d(x, Y )

‖x− y0‖
≥ d(x, Y )

(1 + δ)d(x, Y )
=

1

1 + δ
,

which is at least 1− ε, if we choose δ small enough.


