Functional Analysis, BSM, Spring 2012

Exercise sheet: extension of functionals and the Hahn-Banach theorem

 Solutions1. Let X be over the field $F(\mathbb{R}$ or $\mathbb{C})$. Let $z=x-y$. We need to find a functional $\Lambda \in X^{*}$ for which $\Lambda z=\Lambda x-\Lambda y \neq 0$. We can easily define such a bounded linear functional on the one-dimensional linear subspace spanned by $z, Y=\{\alpha z: \alpha \in F\}$. Namely, let

$$
\Lambda(\alpha z)=\alpha
$$

It is easy to see that Λ is a linear functional on Y with $\Lambda z=1 \neq 0$ and $\|\Lambda\|=1 /\|z\|$. By Hahn-Banach theorem there exists a linear functional $\widetilde{\Lambda}$ on X with the same properties.
2. Consider the linear subspace spanned by $x_{0}: Y=\left\{\alpha x_{0}: \alpha \in F\right\}$. We define a linear functional Λ on Y by

$$
\Lambda\left(\alpha x_{0}\right)=\alpha\left\|x_{0}\right\| .
$$

It is clear that $\Lambda x_{0}=\left\|x_{0}\right\|$ and $\|\Lambda\|=1$. By Hahn-Banach theorem there exists a linear functional $\widetilde{\Lambda}$ on X with the same properties.
3. Clearly, $M \subset \ell_{\infty}$. To see that M is a linear subspace, we have to check two things: $x+y \in M$ for any $x, y \in M$ and $\alpha x \in M$ for any $\alpha \in \mathbb{C}, x \in M$. Both are clear in this case.

The set M is not a closed set in ℓ_{∞}, since the vectors

$$
x_{n}=(1,1 / 2,1 / 3, \ldots, 1 / n, 0,0, \ldots)
$$

are all in M, but they converge (in ℓ_{∞}-norm) to

$$
x=(1,1 / 2,1 / 3,1 / 4, \ldots)
$$

which is not in M.
We claim that he closure of $M, \operatorname{cl}(M)$ is

$$
c_{0}=\left\{\left(\alpha_{1}, \alpha_{2}, \ldots\right): \alpha_{n} \in \mathbb{C} \text { and } \lim _{n \rightarrow \infty} \alpha_{n}=0\right\} .
$$

On the one hand, we need to show that for any $x \in c_{0}$ there exists a sequence $\left(x_{n}\right)$ in M such that x_{n} converges to x (in the ℓ_{∞}-norm). Pick any $x=\left(\alpha_{1}, \alpha_{2}, \ldots\right) \in c_{0}$. The vectors

$$
x_{n}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, 0,0, \ldots\right)
$$

are all in M and

$$
\left\|x-x_{n}\right\|_{\infty}=\left\|\left(0,0, \ldots, 0, \alpha_{n+1}, \alpha_{n+2}, \ldots\right)\right\|_{\infty}=\sup _{i \geq n+1}\left|\alpha_{i}\right|,
$$

which goes to 0 as $n \rightarrow \infty$, because $\alpha_{n} \rightarrow 0$.
On the other hand, we need that for any convergent sequence $\left(x_{n}\right)$ with $x_{n} \in M$, the limit point x lies in c_{0}. Let $x=\left(\alpha_{1}, \alpha_{2}, \ldots\right)$; we have to show that $\alpha_{i} \rightarrow 0$ as $i \rightarrow \infty$. Let $\varepsilon>0$ be arbitrary. There exists n_{0} such that

$$
\left\|x-x_{n_{0}}\right\|_{\infty}<\varepsilon
$$

However, $x_{n_{0}}$ is in M, so there exists N such that after the N-th coordinate $x_{n_{0}}$ has only zeros. Since the ℓ_{∞}-distance of x and $x_{n_{0}}$ is less than ε, it follows that for $i>N$ we have $\left|\alpha_{i}\right|<\varepsilon$. We are done.
4. Set $e=(1,1, \ldots)$ and let Y be the linear subspace spanned by M and e :

$$
Y=\{x+\alpha e: x \in M ; \alpha \in F\} .
$$

First we define Λ on this subspace:

$$
\Lambda(x+\alpha e)=\alpha .
$$

This is clearly a linear functional on Y. Is it bounded? We claim that

$$
\frac{|\Lambda(x+\alpha e)|}{\|x+\alpha e\|_{\infty}}=\frac{|\alpha|}{\|x+\alpha e\|_{\infty}} \leq 1
$$

which would imply that $\|\Lambda\| \leq 1$. (In fact, $\|\Lambda\|=1$.) We need that $\|x+\alpha e\|_{\infty} \geq|\alpha|$. We know that $x \in M$, so it is 0 in all but finitely many coordinates. It means that $x+\alpha e$ is α in all but finitely many coordinates. So the ℓ_{∞}-norm of $x+\alpha e$ is at least $|\alpha|$, and this is what we wanted to prove.

So Λ is a bounded linear functional on Y with the desired properties. By Hahn-Banach theorem we can extend it to a bounded linear functional on ℓ_{∞}.
5. We claim that the bounded linear operator $\Lambda \in \ell_{\infty}^{*}$ of the previous exercise has the property that $\Lambda \neq \Lambda_{y}$ for any $y \in \ell_{1}$. We prove this by contradiction. Assume that $\Lambda=\Lambda_{y}$ for some $y=\left(\beta_{1}, \beta_{2}, \ldots\right) \in \ell_{1}$. Let $e_{n}=(0,0, \ldots, 0,1,0,0, \ldots)$. Note that $e_{n} \in M$ for all n. So

$$
\Lambda e_{n}=0
$$

On the other hand,

$$
\Lambda e_{n}=\Lambda_{y} e_{n}=\beta_{n}
$$

We conclude that $\beta_{n}=0$ for all n. In other words, $y=0$. Thus $\Lambda=\Lambda_{0}$ is the constant zero functional, but this contradicts $\Lambda(1,1, \ldots)=1$.
6. Let $z \in V \backslash M$. We prove that Λ can be extended to a linear functional Λ_{1} on

$$
M_{1}=\{y+\alpha z: y \in M ; \alpha \in \mathbb{R}\}
$$

The rest of the proof (the Zorn's lemma argument) goes the same way as in the original theorem. If Λ_{1} extends Λ, then

$$
\Lambda_{1}(y+\alpha z)=\Lambda y+\alpha \Lambda_{1} z
$$

So the value of $\Lambda_{1} z$ determines Λ_{1}. We need to choose $\Lambda_{1} z$ such that

$$
\Lambda y+\alpha \Lambda_{1} z \leq p(y+\alpha z)
$$

for any $y \in M$ and $\alpha \in \mathbb{R}$.
If $\alpha=0$, then we get back our assumption $\Lambda y \leq p(y)$.
If $\alpha>0$, then after dividing by α and rearranging we get that

$$
\Lambda_{1} z \leq p\left(\frac{y}{\alpha}+z\right)-\Lambda\left(\frac{y}{\alpha}\right)
$$

If $\alpha>0$, then after dividing by $-\alpha$ and rearranging we get that

$$
\Lambda_{1} z \geq-p\left(\frac{y}{-\alpha}-z\right)+\Lambda\left(\frac{y}{-\alpha}\right)
$$

(We needed to distinguish these cases, because $p(\alpha x)=\alpha p(x)$ holds only for positive α.)
So we need to choose $\Lambda_{1} z$ in such a way that

$$
\inf _{y^{\prime} \in M} p\left(y^{\prime}+z\right)-\Lambda y^{\prime} \geq \Lambda_{1} z \geq \sup _{y^{\prime \prime} \in M}-p\left(y^{\prime \prime}-z\right)+\Lambda y^{\prime \prime}
$$

We can do that if and only if for any $y^{\prime}, y^{\prime \prime} \in M$ it holds that

$$
p\left(y^{\prime}+z\right)-\Lambda y^{\prime} \geq-p\left(y^{\prime \prime}-z\right)+\Lambda y^{\prime \prime} \Leftrightarrow p\left(y^{\prime}+z\right)+p\left(y^{\prime \prime}-z\right) \geq \Lambda\left(y^{\prime}+y^{\prime \prime}\right)
$$

Using the sublinearity of p and the assumption that $p(y) \geq \Lambda y$ for $y \in M$:

$$
p\left(y^{\prime}+z\right)+p\left(y^{\prime \prime}-z\right) \geq p\left(\left(y^{\prime}+z\right)+\left(y^{\prime \prime}-z\right)\right)=p\left(y^{\prime}+y^{\prime \prime}\right) \geq \Lambda\left(y^{\prime}+y^{\prime \prime}\right)
$$

7. Let $\Lambda \in Y^{*}$. We can assume without loss of generality that $\|\Lambda\|=1$. We will use the generalized HahnBanach theorem with $p(x) \stackrel{\text { def }}{=}\|x\|$. This is clearly a sublinear functional (it satisfies both $p(x+y) \leq p(x)+p(y)$ and $p(\alpha x)=\alpha p(x)$ for positive α. Moreover, $\Lambda y \leq|\Lambda y| \leq\|\Lambda\|\|y\|=\|y\|$, so $\Lambda y \leq p(y)$ for any $y \in Y$. Thus all the conditions of the generalized Hahn-Banach theorem are satisfied; there exists a linear functional $\widetilde{\Lambda}$ on X such that $\widetilde{\Lambda}$ extends Λ and $\widetilde{\Lambda} x \leq p(x)=\|x\|$. Since $\widetilde{\Lambda}$ is an extension, it is clear that $\|\widetilde{\Lambda}\| \geq\|\Lambda\|$. We need to show $\|\widetilde{\Lambda}\| \leq\|\Lambda\|=1$, that is,

$$
\begin{equation*}
|\widetilde{\Lambda} x| \leq\|x\| . \tag{1}
\end{equation*}
$$

We already know that

$$
\begin{equation*}
\widetilde{\Lambda} x \leq\|x\| \tag{2}
\end{equation*}
$$

Using this for $-x$ instead of x we get that

$$
-\widetilde{\Lambda} x=\widetilde{\Lambda}(-x) \leq\|-x\|=\|x\|
$$

It follows that

$$
\widetilde{\Lambda} x \geq-\|x\|
$$

Combining this with (2) we get (1).
8. It is easy to see that

$$
p\left(\alpha_{1}, \alpha_{2}, \ldots\right) \stackrel{\text { def }}{=} \limsup _{n \rightarrow \infty} \alpha_{n}
$$

is a sublinear functional on ℓ_{∞}. We use the generalized Hahn-Banach theorem in the special case when $M=0$. In this special case the theorem only states that there exists some linear functional Λ on ℓ_{∞} with

$$
\begin{equation*}
\Lambda\left(\alpha_{1}, \alpha_{2}, \ldots\right) \leq \limsup _{n \rightarrow \infty} \alpha_{n} \tag{3}
\end{equation*}
$$

We claim that such a Λ necessarily satisfies the other desired inequality

$$
\begin{equation*}
\Lambda\left(\alpha_{1}, \alpha_{2}, \ldots\right) \geq \liminf _{n \rightarrow \infty} \alpha_{n} \tag{4}
\end{equation*}
$$

We just need to use (3) for the vector $\left(-\alpha_{1},-\alpha_{2}, \ldots\right)$:

$$
-\Lambda\left(\alpha_{1}, \alpha_{2}, \ldots\right)=\Lambda\left(-\alpha_{1},-\alpha_{2}, \ldots\right) \leq \limsup _{n \rightarrow \infty}-\alpha_{n}=-\liminf _{n \rightarrow \infty} \alpha_{n}
$$

which implies (4).
To show that Λ is bounded, we notice that

$$
\limsup _{n \rightarrow \infty} \alpha_{n} \leq\left\|\left(\alpha_{1}, \alpha_{2}, \ldots\right)\right\|_{\infty} \text { and } \liminf _{n \rightarrow \infty} \alpha_{n} \geq-\left\|\left(\alpha_{1}, \alpha_{2}, \ldots\right)\right\|_{\infty}
$$

It follows that $|\Lambda x| \leq\|x\|$ for any $x \in \ell_{\infty}$, thus $\|\Lambda\| \leq 1$.
Note that such a bounded linear functional Λ has the properties that $\Lambda y=0$ for $y \in M$ and $\Lambda(1,1, \ldots)=1$ (see Exercise 4). So the same argument as in Exercise 5 shows that Λ is different from any $\Lambda_{y} ; y \in \ell_{1}$.
9. Pick an arbitrary vector x outside Y. Since Y is closed, $d(x, Y)>0$ (otherwise there would be a sequence $y_{n} \in Y$ with $\left\|y_{n}-x\right\| \rightarrow 0$, but Y is closed, so this would mean that x also lies in Y).

Let $\delta>0$. Since $d(x, Y)$ is the infimum of $\|x-y\|$, there exists $y_{0} \in Y$ such that

$$
\left\|x-y_{0}\right\| \leq(1+\delta) d(x, Y)
$$

Let

$$
e \stackrel{\text { def }}{=} \frac{x-y_{0}}{\left\|x-y_{0}\right\|}
$$

Clearly, $\|e\|=1$. For the distance of e and and an arbitrary $y \in Y$ we have

$$
\|e-y\|=\left\|\frac{x-y_{0}}{\left\|x-y_{0}\right\|}-y\right\|=\frac{1}{\left\|x-y_{0}\right\|}\|x-\underbrace{y_{0}-\left\|x-y_{0}\right\| \cdot y}_{\in Y}\| \geq \frac{d(x, Y)}{\left\|x-y_{0}\right\|} \geq \frac{d(x, Y)}{(1+\delta) d(x, Y)}=\frac{1}{1+\delta},
$$

which is at least $1-\varepsilon$, if we choose δ small enough.

