Functional Analysis, BSM, Spring 2012

Exercise sheet: extension of functionals and the Hahn-Banach theorem

Solutions

1. Let X be over the field $F (\mathbb{R} \text{ or } \mathbb{C})$. Let z = x - y. We need to find a functional $\Lambda \in X^*$ for which $\Lambda z = \Lambda x - \Lambda y \neq 0$. We can easily define such a bounded linear functional on the one-dimensional linear subspace spanned by $z, Y = \{\alpha z : \alpha \in F\}$. Namely, let

$$\Lambda(\alpha z) = \alpha.$$

It is easy to see that Λ is a linear functional on Y with $\Lambda z = 1 \neq 0$ and $\|\Lambda\| = 1/\|z\|$. By Hahn-Banach theorem there exists a linear functional $\widetilde{\Lambda}$ on X with the same properties.

2. Consider the linear subspace spanned by $x_0: Y = \{\alpha x_0 : \alpha \in F\}$. We define a linear functional Λ on Y by

$$\Lambda(\alpha x_0) = \alpha \|x_0\|.$$

It is clear that $\Lambda x_0 = ||x_0||$ and $||\Lambda|| = 1$. By Hahn-Banach theorem there exists a linear functional Λ on X with the same properties.

3. Clearly, $M \subset \ell_{\infty}$. To see that M is a linear subspace, we have to check two things: $x + y \in M$ for any $x, y \in M$ and $\alpha x \in M$ for any $\alpha \in \mathbb{C}, x \in M$. Both are clear in this case.

The set M is not a closed set in ℓ_{∞} , since the vectors

$$x_n = (1, 1/2, 1/3, \dots, 1/n, 0, 0, \dots)$$

are all in M, but they converge (in ℓ_{∞} -norm) to

$$x = (1, 1/2, 1/3, 1/4, \ldots),$$

which is not in M.

We claim that he closure of M, cl(M) is

$$c_0 = \left\{ (\alpha_1, \alpha_2, \ldots) : \alpha_n \in \mathbb{C} \text{ and } \lim_{n \to \infty} \alpha_n = 0 \right\}.$$

On the one hand, we need to show that for any $x \in c_0$ there exists a sequence (x_n) in M such that x_n converges to x (in the ℓ_{∞} -norm). Pick any $x = (\alpha_1, \alpha_2, \ldots) \in c_0$. The vectors

$$x_n = (\alpha_1, \alpha_2, \dots, \alpha_n, 0, 0, \dots)$$

are all in M and

$$||x - x_n||_{\infty} = ||(0, 0, \dots, 0, \alpha_{n+1}, \alpha_{n+2}, \dots)||_{\infty} = \sup_{i \ge n+1} |\alpha_i|,$$

which goes to 0 as $n \to \infty$, because $\alpha_n \to 0$.

On the other hand, we need that for any convergent sequence (x_n) with $x_n \in M$, the limit point x lies in c_0 . Let $x = (\alpha_1, \alpha_2, \ldots)$; we have to show that $\alpha_i \to 0$ as $i \to \infty$. Let $\varepsilon > 0$ be arbitrary. There exists n_0 such that

$$\|x - x_{n_0}\|_{\infty} < \varepsilon.$$

However, x_{n_0} is in M, so there exists N such that after the N-th coordinate x_{n_0} has only zeros. Since the ℓ_{∞} -distance of x and x_{n_0} is less than ε , it follows that for i > N we have $|\alpha_i| < \varepsilon$. We are done.

4. Set e = (1, 1, ...) and let Y be the linear subspace spanned by M and e:

$$Y = \{x + \alpha e : x \in M; \alpha \in F\}.$$

First we define Λ on this subspace:

$$\Lambda(x + \alpha e) = \alpha.$$

This is clearly a linear functional on Y. Is it bounded? We claim that

$$\frac{|\Lambda(x+\alpha e)|}{\|x+\alpha e\|_{\infty}} = \frac{|\alpha|}{\|x+\alpha e\|_{\infty}} \le 1$$

which would imply that $\|\Lambda\| \leq 1$. (In fact, $\|\Lambda\| = 1$.) We need that $\|x + \alpha e\|_{\infty} \geq |\alpha|$. We know that $x \in M$, so it is 0 in all but finitely many coordinates. It means that $x + \alpha e$ is α in all but finitely many coordinates. So the ℓ_{∞} -norm of $x + \alpha e$ is at least $|\alpha|$, and this is what we wanted to prove.

So Λ is a bounded linear functional on Y with the desired properties. By Hahn-Banach theorem we can extend it to a bounded linear functional on ℓ_{∞} .

5. We claim that the bounded linear operator $\Lambda \in \ell_{\infty}^*$ of the previous exercise has the property that $\Lambda \neq \Lambda_y$ for any $y \in \ell_1$. We prove this by contradiction. Assume that $\Lambda = \Lambda_y$ for some $y = (\beta_1, \beta_2, \ldots) \in \ell_1$. Let $e_n = (0, 0, \ldots, 0, 1, 0, 0, \ldots)$. Note that $e_n \in M$ for all n. So

$$\Lambda e_n = 0.$$

On the other hand,

$$\Lambda e_n = \Lambda_y e_n = \beta_n.$$

We conclude that $\beta_n = 0$ for all n. In other words, y = 0. Thus $\Lambda = \Lambda_0$ is the constant zero functional, but this contradicts $\Lambda(1, 1, \ldots) = 1$.

6. Let $z \in V \setminus M$. We prove that Λ can be extended to a linear functional Λ_1 on

$$M_1 = \{ y + \alpha z : y \in M; \alpha \in \mathbb{R} \}.$$

The rest of the proof (the Zorn's lemma argument) goes the same way as in the original theorem.

If Λ_1 extends Λ , then

$$\Lambda_1(y + \alpha z) = \Lambda y + \alpha \Lambda_1 z.$$

So the value of $\Lambda_1 z$ determines Λ_1 . We need to choose $\Lambda_1 z$ such that

$$\Lambda y + \alpha \Lambda_1 z \le p(y + \alpha z)$$

for any $y \in M$ and $\alpha \in \mathbb{R}$.

If $\alpha = 0$, then we get back our assumption $\Lambda y \leq p(y)$.

If $\alpha > 0$, then after dividing by α and rearranging we get that

$$\Lambda_1 z \le p\left(\frac{y}{\alpha} + z\right) - \Lambda\left(\frac{y}{\alpha}\right)$$

If $\alpha > 0$, then after dividing by $-\alpha$ and rearranging we get that

$$\Lambda_1 z \ge -p\left(\frac{y}{-\alpha} - z\right) + \Lambda\left(\frac{y}{-\alpha}\right).$$

(We needed to distinguish these cases, because $p(\alpha x) = \alpha p(x)$ holds only for positive α .)

So we need to choose $\Lambda_1 z$ in such a way that

$$\inf_{y' \in M} p\left(y'+z\right) - \Lambda y' \ge \Lambda_1 z \ge \sup_{y'' \in M} -p\left(y''-z\right) + \Lambda y''.$$

We can do that if and only if for any $y', y'' \in M$ it holds that

$$p\left(y'+z\right) - \Lambda y' \geq -p\left(y''-z\right) + \Lambda y'' \Leftrightarrow p\left(y'+z\right) + p\left(y''-z\right) \geq \Lambda \left(y'+y''\right).$$

Using the sublinearity of p and the assumption that $p(y) \ge \Lambda y$ for $y \in M$:

$$p(y'+z) + p(y''-z) \ge p((y'+z) + (y''-z)) = p(y'+y'') \ge \Lambda(y'+y'').$$

7. Let $\Lambda \in Y^*$. We can assume without loss of generality that $\|\Lambda\| = 1$. We will use the generalized Hahn-Banach theorem with $p(x) \stackrel{\text{def}}{=} \|x\|$. This is clearly a sublinear functional (it satisfies both $p(x+y) \leq p(x) + p(y)$ and $p(\alpha x) = \alpha p(x)$ for positive α). Moreover, $\Lambda y \leq |\Lambda y| \leq |\Lambda| ||y|| = ||y||$, so $\Lambda y \leq p(y)$ for any $y \in Y$. Thus all the conditions of the generalized Hahn-Banach theorem are satisfied; there exists a linear functional $\tilde{\Lambda}$ on X such that $\tilde{\Lambda}$ extends Λ and $\tilde{\Lambda} x \leq p(x) = ||x||$. Since $\tilde{\Lambda}$ is an extension, it is clear that $\|\tilde{\Lambda}\| \geq \|\Lambda\|$. We need to show $\|\tilde{\Lambda}\| \leq \|\Lambda\| = 1$, that is,

$$|\tilde{\Lambda}x| \le \|x\|. \tag{1}$$

We already know that

$$\tilde{\Lambda}x \le \|x\|. \tag{2}$$

Using this for -x instead of x we get that

$$-\widetilde{\Lambda}x = \widetilde{\Lambda}(-x) \le \|-x\| = \|x\|.$$

 $\widetilde{\Lambda}x > -\|x\|.$

It follows that

Combining this with (2) we get (1).

8. It is easy to see that

$$p(\alpha_1, \alpha_2, \ldots) \stackrel{\text{def}}{=} \limsup_{n \to \infty} \alpha_n$$

is a sublinear functional on ℓ_{∞} . We use the generalized Hahn-Banach theorem in the special case when M = 0. In this special case the theorem only states that there exists some linear functional Λ on ℓ_{∞} with

$$\Lambda(\alpha_1, \alpha_2, \ldots) \le \limsup_{n \to \infty} \alpha_n. \tag{3}$$

We claim that such a Λ necessarily satisfies the other desired inequality

$$\Lambda(\alpha_1, \alpha_2, \ldots) \ge \liminf_{n \to \infty} \alpha_n. \tag{4}$$

We just need to use (3) for the vector $(-\alpha_1, -\alpha_2, \ldots)$:

$$-\Lambda(\alpha_1,\alpha_2,\ldots) = \Lambda(-\alpha_1,-\alpha_2,\ldots) \le \limsup_{n\to\infty} -\alpha_n = -\liminf_{n\to\infty} \alpha_n,$$

which implies (4).

To show that Λ is bounded, we notice that

$$\limsup_{n \to \infty} \alpha_n \le \|(\alpha_1, \alpha_2, \ldots)\|_{\infty} \text{ and } \liminf_{n \to \infty} \alpha_n \ge -\|(\alpha_1, \alpha_2, \ldots)\|_{\infty}$$

It follows that $|\Lambda x| \leq ||x||$ for any $x \in \ell_{\infty}$, thus $||\Lambda|| \leq 1$.

Note that such a bounded linear functional Λ has the properties that $\Lambda y = 0$ for $y \in M$ and $\Lambda(1, 1, ...) = 1$ (see Exercise 4). So the same argument as in Exercise 5 shows that Λ is different from any Λ_y ; $y \in \ell_1$.

9. Pick an arbitrary vector x outside Y. Since Y is closed, d(x, Y) > 0 (otherwise there would be a sequence $y_n \in Y$ with $||y_n - x|| \to 0$, but Y is closed, so this would mean that x also lies in Y).

Let $\delta > 0$. Since d(x, Y) is the infimum of ||x - y||, there exists $y_0 \in Y$ such that

$$||x - y_0|| \le (1 + \delta)d(x, Y).$$

Let

$$e \stackrel{\text{def}}{=} \frac{x - y_0}{\|x - y_0\|}.$$

Clearly, ||e|| = 1. For the distance of e and an arbitrary $y \in Y$ we have

$$\|e - y\| = \left\|\frac{x - y_0}{\|x - y_0\|} - y\right\| = \frac{1}{\|x - y_0\|} \left\|x - \underbrace{y_0 - \|x - y_0\| \cdot y}_{\in Y}\right\| \ge \frac{d(x, Y)}{\|x - y_0\|} \ge \frac{d(x, Y)}{(1 + \delta)d(x, Y)} = \frac{1}{1 + \delta},$$

which is at least $1 - \varepsilon$, if we choose δ small enough.