Functional Analysis, BSM, Spring 2012
Exercise sheet: extension of functionals and the Hahn-Banach theorem
Solutions

1. Let X be over the field F (R or C). Let z = x —y. We need to find a functional A € X* for which
Az = Ax — Ay # 0. We can easily define such a bounded linear functional on the one-dimensional linear
subspace spanned by z, Y = {az : « € F'}. Namely, let

Aaz) = a.

It is easy to see that A is a linear functional on Y with Az = 1 # 0 and ||A|| = 1/|2||. By Hahn-Banach
theorem there exists a linear functional A on X with the same properties.

2. Consider the linear subspace spanned by z¢: Y = {axg : « € F'}. We define a linear functional A on Y by
Alaxg) = af|zol|-

It is clear that Azg = ||zo|| and |A| = 1. By Hahn-Banach theorem there exists a linear functional A on X
with the same properties.

3. Clearly, M C {.. To see that M is a linear subspace, we have to check two things: x +y € M for any
z,y € M and ax € M for any o € C,xz € M. Both are clear in this case.
The set M is not a closed set in £, since the vectors

z, = (1,1/2,1/3,...,1/n,0,0,...)
are all in M, but they converge (in ¢-norm) to
z=(1,1/2,1/3,1/4,...),

which is not in M.
We claim that he closure of M, cl(M) is

co = {(al,ag,...) ap, € Cand lim ay :O}.
n—oo
On the one hand, we need to show that for any x € ¢y there exists a sequence (z,,) in M such that z,, converges
to z (in the ¢-norm). Pick any z = (a1, as,...) € ¢y. The vectors

Ipn = (0417042,...,047“0,0,...)

are all in M and
|z — znlloo = 1(0,0,...,0, api1, nto, - )loo = sup |agl,
i>n+1
which goes to 0 as n — oo, because «;,, — 0.

On the other hand, we need that for any convergent sequence (x,,) with x,, € M, the limit point z lies in
co. Let z = (o, ag,...); we have to show that a; — 0 as i — co. Let € > 0 be arbitrary. There exists ny such
that

[# = &, lloc <e.

However, z,, is in M, so there exists N such that after the N-th coordinate z,, has only zeros. Since the
{-distance of = and xy,, is less than e, it follows that for ¢ > N we have |o;| < €. We are done.



4. Set e = (1,1,...) and let Y be the linear subspace spanned by M and e:
Y={z+ae:x€ M;ac€F}.
First we define A on this subspace:
Az + ae) = a.
This is clearly a linear functional on Y. Is it bounded? We claim that
Az + ae) |al

Iz + aelle — [lz+ aello ~

9

which would imply that ||A|| < 1. (In fact, [|A|| = 1.) We need that ||z + ae||oc > |a|. We know that x € M,
so it is 0 in all but finitely many coordinates. It means that x + ce is « in all but finitely many coordinates.
So the fo,-norm of  + ae is at least ||, and this is what we wanted to prove.

So A is a bounded linear functional on Y with the desired properties. By Hahn-Banach theorem we can
extend it to a bounded linear functional on f...

5. We claim that the bounded linear operator A € ¢35, of the previous exercise has the property that A # A,
for any y € ¢;. We prove this by contradiction. Assume that A = A, for some y = (51, 32,...) € {1. Let
e, = (0,0,...,0,1,0,0,...). Note that e, € M for all n. So

Ae, = 0.

On the other hand,
Ae,, = Aye,, = .

We conclude that 3, = 0 for all n. In other words, ¥y = 0. Thus A = Ay is the constant zero functional, but
this contradicts A(1,1,...) = 1.
6. Let z € V' \ M. We prove that A can be extended to a linear functional A on

Mi={y+az:ye M;acR}

The rest of the proof (the Zorn’s lemma argument) goes the same way as in the original theorem.
If A1 extends A, then

A (y + az) = Ay + ah; .
So the value of A1z determines A;. We need to choose A;z such that
Ay + a1z < p(y + az)

for any y € M and a € R.
If a = 0, then we get back our assumption Ay < p(y).
If @ > 0, then after dividing by « and rearranging we get that

neen(2s) (D).

If @ > 0, then after dividing by —a and rearranging we get that

Alz>—p<_ya—z>+/\(_ya).

(We needed to distinguish these cases, because p(ax) = ap(z) holds only for positive «.)
So we need to choose A;z in such a way that

inf p(y' +2)— Ay >Aiz> sup —p(y"' —z) + Ay".
y'eM yEM

We can do that if and only if for any v, y” € M it holds that
Py +2) M =) =)+ A ep( +2)+p( —2) =AY +y").
Using the sublinearity of p and the assumption that p(y) > Ay for y € M:

pW+2)+pW —2)2p((W +2)+ " —2) =l +y") > Al +y").



7. Let A € Y*. We can assume without loss of generality that ||A|] = 1. We will use the generalized Hahn-
Banach theorem with p(z) Lef ||z||. This is clearly a sublinear functional (it satisfies both p(z +y) < p(x)+p(y)
and p(ax) = ap(z) for positive ). Moreover, Ay < [Ay| < [[A[l[lyl| = [[y[|, so Ay < p(y) for any y € Y. Thus
all the conditions of the generalized Hahn-Banach theorem are satisfied; there exists a linear functional A on
X such that A extends A and Az < p(z) = [|lz[|. Since A is an extension, it is clear that ||A]| = [[A]. We need
to show ||A]| < ||A|| =1, that is, B

[Az| < l]- (1)
We already know that B

Kz < |jol. 2)
Using this for —x instead of x we get that

—Az = A(=z) <[] = zf| =[]

It follows that B
Az > —|z]|.

Combining this with (2) we get (1).

8. It is easy to see that

def ;.
p(ai,asz,...) = limsup a,
n—oo

is a sublinear functional on /.. We use the generalized Hahn-Banach theorem in the special case when M = 0.
In this special case the theorem only states that there exists some linear functional A on £, with

Alaq, ag,...) < limsup a,. (3)

n—oo

We claim that such a A necessarily satisfies the other desired inequality

Ao, ag,...) > liminf . (4)

n— 00

We just need to use (3) for the vector (—ay, —as,...):

—Alog,ag,...) = A(—aq,—aa,...) <limsup —a,, = — liminf «,,,
n—oo n—00
which implies (4).
To show that A is bounded, we notice that

limsup a, < |[(1, @2, ...)|lec and liminf oy, > —||(a1, a2, .. .| co-
n—r oo n—oo

It follows that |Az| < ||z|| for any = € £, thus ||A| < 1.
Note that such a bounded linear functional A has the properties that Ay = 0 for y € M and A(1,1,...) =1
(see Exercise 4). So the same argument as in Exercise 5 shows that A is different from any Ay; y € 44.

9. Pick an arbitrary vector = outside Y. Since Y is closed, d(z,Y’) > 0 (otherwise there would be a sequence
Yn €Y with ||y, — z|| = 0, but Y is closed, so this would mean that x also lies in V).
Let 6 > 0. Since d(x,Y) is the infimum of ||z — y||, there exists yo € ¥ such that

[z = yoll < (1 +6)d(z,Y).

Let
def T — Yo
e = ————.
|z — yoll

Clearly, |le|| = 1. For the distance of e and and an arbitrary y € Y we have

5o
S
[ = yoll [l = yoll

d(z,Y) < d(z,Y) 1
|z — ol = (1+68)d(z,Y) 146’

Yo — |z — woll - y|| > |
—_————

€Yy

e—yn:\

which is at least 1 — ¢, if we choose § small enough.



