
Functional Analysis, BSM, Spring 2012
Exercise sheet: Baire category theorem and its consequences

Solutions

1. Let q1, q2, . . . be an enumeration of the rationals and let Fn = {qn}. These are clearly closed sets containing
no balls. However, their union is the whole space.

2. A subset of a metric space is dense if it has a point in every ball. So if Gn is open and dense, then
its complement Fn = X \ Gn is closed and contains no ball. By Baire category theorem it follows that⋃∞

n=1 Fn 6= X, which yields that
⋂∞

n=1Gn 6= ∅.
To prove that

⋂∞
n=1Gn is dense, we need to show that it has a point in every ball. Let us consider the closed

ball F = B̄r(x), which can be viewed as a complete metric space itself (with the original metric). The sets
G′n = F ∩Gn are open and dense in F . So using the first part of the solution, we conclude that

⋂∞
n=1G

′
n 6= ∅,

that is, F ∩
⋂∞

n=1Gn 6= ∅. In other words,
⋂∞

n=1Gn has a point in the ball F = B̄r(x).
For a non-complete metric space in which this is not true, consider the example in the previous exercise

and let Gn = X \ Fn = Q \ {qn}.

3. Since Y 6= X, there exists x ∈ X \ Y . Since Y is a linear subspace, y + αx is outside Y for any y ∈ Y and
α > 0. However, if α is small enough, then y + αx is clearly in the ball Br(y), which means that Y cannot
contain this ball.

4. Let Y be a finite dimensional subspace of X. Assume that it is not closed, so there exists a sequence
x1, x2, . . . ∈ Y converging to x /∈ Y . Let us consider the linear subspace X ′ spanned by Y and x. Then X ′ is
finite dimensional, and Y is clearly not closed in X ′ either. So it suffices to prove the statement in the finite
dimensional X ′.

We assume that X was finite dimensional in the first place. We need to use the fact that every finite
dimensional normed space is complete. (See the extra problems.) Then both X and Y are complete, and a
complete subspace of a complete space must be closed.

5. Assume that a complete normed space has a countably infinite basis: x1, x2, . . .. Let Fn denote the linear
subspace spanned by x1, . . . , xn. It is closed (since it is finite dimensional) and contains no ball (since it is a
proper linear subspace). Since x1, x2, . . . is a basis,

⋃∞
n=1 Fn = X, which contradicts Baire category theorem.

6. This follows from the previous exercise, since the vectors en = (0, 0, . . . , 0, 1, 0, 0, . . .) form a countably
infinite basis for X.

7. Assume that ‖T1x‖Y , ‖T2x‖Y , . . . is bounded for any x, that is, ∃Cx such that ‖Tnx‖Y ≤ Cy for all n. By the
uniform boundedness principle it follows that ∃C such that ‖Tn‖ ≤ C for all n, which contradicts ‖Tn‖ → ∞.

8. Let Λn be the following linear functional on c0:

Λn(β1, β2, . . .) = α1β1 + · · ·+ αnβn.

It is easy to see that Λn is bounded with ‖Λn‖ = |α1|+ · · ·+ |αn|. We know that for any fixed x = (β1, β2, . . .) ∈
c0 the sequence Λnx is convergent, hence bounded. By the uniform boundedness principle this means that
there exists C such that ‖Λn‖ = |α1|+ · · ·+ |αn| ≤ C for all n. It follows that |α1|+ |α2|+ · · · ≤ C <∞.

A direct proof: assume that |α1| + |α2| + · · · = ∞. We need to construct a sequence (βn) converging to 0
for which

∑∞
n=1 αnβn is not convergent. First assume that αn ≥ 0. We can choose 1 = k1 < k2 < k3 < . . .

such that for any i ≥ 1 we have ∑
ki≤j<ki+1

αj ≥ 1.

For any ki ≤ j < ki+1 set βj = 1/i. Then ∑
ki≤j<ki+1

αjβj ≥
1

i
.

Since
∑∞

i=1
1
i =∞, we get that

∑∞
n=1 αnβn =∞, so it is not convergent.

In the general case (when αn can be negative), we choose the sign of βn to be the same as the sign of αn.



9. Let Λn denote the bounded linear functional f(xn, ·) : Y → R, that is, Λny = f(xn, y). For a fixed y, the
linear functional f(·, y) : X → R is bounded, that is, there exists Cy such that

|f(x, y)| ≤ Cy‖x‖.

Since ‖xn‖ → 0, there exists M such that ‖xn‖ ≤M for all n. It follows that

|Λny| = |f(xn, y)| ≤ Cy‖xn‖ ≤M · Cy.

Thus the uniform boundedness principle yields that there exists C such that ‖Λn‖ ≤ C for all n. So

|f(xn, yn)| = |Λnyn| ≤ ‖Λn‖‖yn‖ ≤ C‖yn‖ → 0 as n→∞.

10. Consider the identity map on X:
T (x) = x for x ∈ X.

We can view this map as a linear operator from (X, ‖ · ‖1) to (X, ‖ · ‖2). Since ‖x‖2 ≤ C‖x‖1, we have
‖T‖1,2 ≤ C < ∞. So T is a bounded operator; it is clearly bijective, so by the inverse mapping theorem
T−1 = T as an (X, ‖ · ‖1) → (X, ‖ · ‖2) operator is also bounded. With D = ‖T−1‖2,1 we get the desired
inequality ‖x‖1 ≤ D‖x‖2.

11. Consider the vector space `1 with the `1 and the `∞ norms. For any x ∈ `1 it clearly holds that ‖x‖∞ ≤ ‖x‖1.
However, for xn = (1, 1, . . . , 1, 0, 0, . . .) ∈ `1 we have ‖x‖∞ = 1, but ‖x‖1 = n.

12. We will apply the uniform boundedness principle to the dual space X∗. The role of Tn will be played by
x̂n ∈ X∗∗. Recall that x̂n is defined as the bounded linear functional on X∗ for which x̂nΛ = Λxn (Λ ∈ X∗).
The assumption that (Λxn) is bounded means that for any vector Λ in our space X∗ the sequence x̂nΛ is
bounded. Using the uniform boundedness principle we get that there exists C such that ‖x̂n‖ ≤ C for all n.
However, we proved that ‖xn‖ = ‖x̂n‖, we are done. (Note that we did not use the completeness of X. We
needed that the dual space X∗ is complete, which is true even if X is not.)


