Functional Analysis, BSM, Spring 2012

Exercise sheet: Spectra of operators

Let X be a complex Banach space and let $T \in B(X)=B(X, X)$, that is, $T: X \rightarrow X$ is a bounded operator. T is invertible if it has a bounded inverse $T^{-1} \in B(X)$. By the inverse mapping theorem T is invertible if and only if it is bijective, that is, T is injective ($\operatorname{ker} T=\{0\}$) and surjective $(\operatorname{ran} T=X)$.
The resolvent set of T is

$$
\varrho(T) \stackrel{\text { def }}{=}\{\lambda \in \mathbb{C}: \lambda I-T \text { is invertible }\}=\{\lambda: \lambda I-T \text { is bijective }\} .
$$

The spectrum of T is

$$
\sigma(T) \stackrel{\text { def }}{=} \mathbb{C} \backslash \varrho(T)=\{\lambda: \lambda I-T \text { is not invertible }\}=\{\lambda: \lambda I-T \text { is not bijective }\}
$$

The point spectrum of T (the set of eigenvalues) is

$$
\sigma_{p}(T) \stackrel{\text { def }}{=}\{\lambda: \lambda I-T \text { is not injective }\}=\{\lambda: \exists x \in X \backslash\{0\} \text { such that } T x=\lambda x\}
$$

The residual spectrum of T is

$$
\sigma_{r}(T) \stackrel{\text { def }}{=}\{\lambda: \lambda I-T \text { is injective and } \operatorname{ran}(\lambda I-T) \text { is not dense }\} .
$$

It can be shown that the spectrum $\sigma(T)$ is a non-empty closed set for which

$$
\sigma(T) \subset\{\lambda \in \mathbb{C}:|\lambda| \leq\|T\|\}, \text { moreover, } \sigma(T) \subset\{\lambda \in \mathbb{C}:|\lambda| \leq r(T)\},
$$

where $r(T)$ denotes the spectral radius of $T: r(T) \stackrel{\text { def }}{=} \inf _{k} \sqrt[k]{\left\|T^{k}\right\|}$.
If T is invertible, then $\sigma\left(T^{-1}\right)=\left\{\lambda^{-1}: \lambda \in \sigma(T)\right\}$.
If $p(z)=\sum_{i=0}^{m} \alpha_{i} z^{i}$ is a polynomial, then for $p(T) \stackrel{\text { def }}{=} \sum_{i=0}^{m} \alpha_{i} T^{i} \in B(X)$ we have $\sigma(p(T))=\{p(\lambda): \lambda \in \sigma(T)\}$.

1. Let X, Y be normed spaces. Prove that ker T is a closed linear subspace of X for any bounded linear operator $T: X \rightarrow Y$. (In particular, ker Λ is a closed linear subspace of X for any $\Lambda \in X^{*}$.)
2. a) Let X, Y be normed spaces, $T: X \rightarrow Y$ a bounded operator. Show that the range $\operatorname{ran} T=\{T x: x \in X\}$ is a linear subspace of Y.
b) Let $X=Y=\ell_{2}$ and let $T: \ell_{2} \rightarrow \ell_{2}$ be the following operator:

$$
T\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \ldots\right)=\left(\alpha_{1}, \alpha_{2} / 2, \alpha_{3} / 3, \alpha_{4} / 4, \ldots\right)
$$

Show that T is bounded and $\operatorname{ran} T$ is not closed.
3. W5P1. (8 points) Let X, Y be Banach spaces. Suppose that $T \in B(X, Y)$ is bounded below, that is, there exists $c>0$ such that $\|T x\| \geq c\|x\|$ for all $x \in X$. Prove that $\operatorname{ran} T$ is closed.
4. W5P2. (8 points) Let X be a Banach space, $T \in B(X)$. Show that T is invertible if and only if T is bounded below and ran T is dense.
5. Let T be the left shift operator on ℓ_{∞}.
a) Determine $\|T\|$ and the point spectrum $\sigma_{p}(T)$.
b) What is the spectrum and the residual spectrum of T ?
6. Let T be the left shift operator on ℓ_{1}.
a) Determine $\|T\|, \sigma_{p}(T), \sigma(T)$.
b) Prove that $\operatorname{ran}(I-T)$ is dense by showing that it contains all sequences with finitely many nonzero elements.
c) Show that $\operatorname{ran}(I-T) \neq \ell_{1}$. Can you give an explicit example of a vector $y \notin \operatorname{ran}(I-T)$?
d) What is the residual spectrum of T ?
7. Let $T \in B(X)$. Prove that ran T is not dense if and only if there exists a nonzero $\Lambda \in X^{*}$ such that $\Lambda T=0$.
8. W5P3. (8 points) Let T be the right shift operator on ℓ_{1}.
a) Determine $\|T\|$ and $\sigma_{p}(T)$.
b) Prove that if $|\lambda| \leq 1$, then $\operatorname{ran}(\lambda I-T)$ is not dense. (Hint: find $0 \neq \Lambda \in \ell_{1}^{*}$ such that $\Lambda(\lambda I-T)=0$.)
c) Determine $\sigma_{r}(T)$ and $\sigma(T)$.
9. W5P4. (10 points) Let T be the right shift operator on ℓ_{∞}.
a) Find an open ball in ℓ_{∞} that is disjoint from $\operatorname{ran}(I-T)$.
b) Determine $\sigma_{p}(T), \sigma_{r}(T)$ and $\sigma(T)$.
10. W5P5. (12 points) Let T be the right shift operator on ℓ_{2}.
a) Show that $\operatorname{ran}(I-T) \neq \ell_{2}$, but $\operatorname{ran}(I-T)$ is dense in ℓ_{2}.
b) Determine $\sigma_{p}(T), \sigma_{r}(T)$ and $\sigma(T)$.
11. W5P6. (10 points) Consider the space $C[0,1]$ with the supremum norm. The Volterra integral operator $T: C[0,1] \rightarrow C[0,1]$ is defined as

$$
(T f)(x) \stackrel{\text { def }}{=} \int_{0}^{x} f(y) \mathrm{d} y
$$

Determine the norm and the spectral radius of T. What is $\sigma(T)$ and ker T ? Is ran T closed in $C[0,1]$?
12. Let X be a normed space, $T \in B(X)$. Prove that $\lim _{k \rightarrow \infty} \sqrt[k]{\left\|T^{k}\right\|}$ exists and is equal to the spectral radius $r(T)=\inf _{k} \sqrt[k]{\left\|T^{k}\right\|}$.
Hint: show that the sequence $a_{k}=\log \left\|T^{k}\right\|$ is subadditive (i.e., $a_{m+n} \leq a_{m}+a_{n}$) and prove that for any such sequence $\lim _{k \rightarrow \infty} a_{k} / k$ exists and is equal to $\inf _{k} a_{k} / k$.
13. Let $S, T \in B(X)$ be invertible bounded operators. Prove that

$$
\text { if }\|S-T\| \leq \frac{1}{2\left\|T^{-1}\right\|} \text {, then }\left\|S^{-1}\right\| \leq 2\left\|T^{-1}\right\|
$$

14. Consider the following operator on ℓ_{1} :

$$
T:\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \ldots\right) \mapsto\left(\alpha_{1}+\alpha_{2}+\alpha_{3}, \alpha_{2}+\alpha_{3}+\alpha_{4}, \alpha_{3}+\alpha_{4}+\alpha_{5}, \alpha_{4}+\alpha_{5}+\alpha_{6}, \ldots\right)
$$

Describe $\sigma(T)$. What is its intersection with the real axis?
15. W5P7. (8 points) Let X be a Banach space, $S, T \in B(X)$. Show that $r(S T)=r(T S)$.
16. Let X be a Banach space, $T \in B(X)$ with $r(T)<1$. Prove that $I+T+T^{2}+T^{3}+\cdots$ is a convergent sum in $B(X)$. Show that the limit operator is the inverse of $I-T$.
17.* W5P8. (20 points) Let X be a Banach space, $S, T \in B(X)$.
a) Prove that $I-S T$ is invertible if and only if $I-T S$ is invertible.
b) Prove that $\{0\} \cup \sigma(S T)=\{0\} \cup \sigma(T S)$. In other words, the spectra of $S T$ and $T S$ are the same with the possible exception of the point 0 .

Solutions can be found on: www.renyi.hu/~harangi/bsm/

