
Functional Analysis, BSM, Spring 2012
Exercise sheet: Spectra of operators

Solutions

1. We proved earlier that kerT is a linear subspace. Since T is bounded, it is continuous, so the preimage of
any closed set is closed. However, kerT is the preimage of {0} ⊂ Y , which is clearly a closed set.

2. a) If y1, y2 ∈ ranT , then ∃x1, x2 ∈ X with Tx1 = y1 and Tx2 = y2. Thus y1 + y2 = T (x1 + x2) ∈ ranT . If
α ∈ C, then αy1 = T (αx1) ∈ ranT .
b) Let y = (1, 1/2, 1/3, . . .) and let yn = (1, 1/2, 1/3, . . . , 1/n, 0, 0, . . .). It is easy to check that y, yn ∈ `2 and
‖y − yn‖2 → 0 as n→∞. However, yn ∈ ranT , but y /∈ ranT , which implies that ranT is not closed.

3. Let y1, y2, . . . ∈ ranT converging to y ∈ Y . We need to show that y ∈ ranT , too. There exists xn ∈ X such
that Txn = yn. Since T is bounded below, we have

‖xn − xm‖ ≤
1

c
‖Txn − Txm‖ =

1

c
‖yn − ym‖.

However, (yn) is Cauchy (because it is convergent), thus so is (xn). Since X is complete, (xn) is convergent:
‖xn − x‖ → 0 as n→∞. Using that T is continuous, we get that Txn = yn converges to Tx. Thus y = Tx; it
follows that y ∈ ranT .

4. First suppose that T is invertible. Then T is surjective, so ranT = Y is indeed dense. Since T−1 is bounded,
we get

‖x‖ = ‖T−1Tx‖ ≤ ‖T−1‖‖Tx‖,

which implies that ‖Tx‖ ≥ c‖x‖ with c = 1/‖T−1‖.
Now suppose that T is bounded below and ranT is dense. By the previous exercise ranT must be closed,

thus ranT = X, that is, T is surjective. Also, T is injective, because if Tx = 0, then ‖x‖ ≤ ‖Tx‖/c = 0, so
x = 0. Consequently, T is bijective. By the inverse mapping theorem it follows that T is invertible.

5. a) We saw earlier that ‖T‖ = 1 and that σp(T ) (the set of eigenvalues) is the closed unit disk {λ ∈ C : |λ| ≤ 1}.
(The vector (1, λ, λ2, . . .) ∈ `∞ is an eigenvector for λ.)
b) It holds for arbitrary T that

σp(T ) ⊂ σ(T ) ⊂ {λ ∈ C : |λ| ≤ ‖T‖}.

Here both the left-hand side and the right-hand side are the closed unit disk. It follows that σ(T ) is also the
closed unit disk. Finally, the residual spectrum is empty, because σr(T ) ⊂ σ(T ) \ σp(T ).

6. a) Since ‖T‖ = 1, σ(T ) is contained by the closed unit disk. On the other hand, σp(T ) is the open unit disk
{λ ∈ C : |λ| < 1}; σp(T ) ⊂ σ(T ) and σ(T ) is closed, so σ(T ) must contain the closure of σp(T ), which is the
closed unit disk again. Hence σ(T ) = {λ ∈ C : |λ| ≤ 1}.
b) For the operator I − T we have

I − T : x = (α1, α2, α3, . . .) 7→ (α1 − α2, α2 − α3, α3 − α4, . . .).

For given β, . . . , βn, we need to solve the equation (I−T )x = (β1, β2, . . . , βn, 0, 0, . . .). We get that α2 = α1−β1,
α3 = α1 − β1 − β2, and so on. For m > n we get

αm = α1 − β1 − β2 − · · · − βn.

So if we set α1 = β1 + · · ·+ βn, then αm = 0 for all m > n and we get a solution x ∈ `1.
c) Since 1 ∈ σ(T ), I − T is not bijective. Since 1 /∈ σp(T ), I − T is injective. Consequently, I − T cannot be
surjective: ran(I − T ) 6= `1. Actually, it is not hard to show that

y =

(
1

1 · 2
,

1

2 · 3
,

1

3 · 4
,

1

4 · 5
, . . .

)
/∈ ran(I − T ).



We will use that

1

1 · 2
+

1

2 · 3
+ · · ·+ 1

n · (n+ 1)
=

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+ · · ·+

(
1

n
− 1

n+ 1

)
= 1− 1

n+ 1
.

When we solve (I − T )x = y, then we get that

αn+1 = α1 − 1 +
1

n+ 1
.

We would need a solution for which
∑

n |αn| <∞. We can only hope this if αn → 0 as n→∞. Consequently,
we have to set α1 = 1. Then αn+1 = 1/(n + 1). However, the sum of these is infinite. Thus we proved that
there is no x ∈ `1 with (I − T )x = y; so y /∈ ranT .
d) Since σr(T ) ⊂ σ(T ) \ σp(T ) = {λ ∈ C : |λ| = 1}, we need to check the complex numbers of unit length. We
proved that ran(I − T ) is dense. Basically the same proof shows that ran(λI − T ) is dense for any |λ| = 1. It
follows that σr(T ) = ∅.

7. If such a Λ exists, then ranT ⊂ ker Λ. However, ker Λ is a closed proper subspace of X, so the closure of
ranT is also contained by ker Λ, so it cannot be the whole space, ranT is not dense.

To prove the other direction, suppose that ranT is not dense. Then the closure of ranT is a closed proper
subspace Y ≤ X. Pick some x ∈ X \ Y . Using the Hahn-Banach theorem it is not hard to prove the existence
of a bounded linear functional Λ ∈ X∗ for which Λy = 0 for y ∈ Y and Λx = 1. Then Λ 6= 0, but ΛT = 0.

8. a) We saw earlier that ‖T‖ = 1 and σp(T ) = ∅.
b) For |λ| ≤ 1 consider the vector

y = (1, λ, λ2, λ3, . . .) ∈ `∞
and the corresponding bounded linear functional Λy ∈ `∗1. We claim that Λy(λI − T ) = 0. Indeed, for an
arbitrary x = (α1, α2, . . .) ∈ `1:

Λy(λI − T )x = Λy(λα1, λα2 − α1, λα3 − α2, . . .) = λα1 + λ(λα2 − α1) + λ2(λα3 − α2) + · · · = 0.

By the previous exercise it follows that ran(λI − T ) is not dense, so λ ∈ σr(T ) for |λ| ≤ 1.
c) σr(T ) = σ(T ) = {λ ∈ C : |λ| ≤ 1}.

9. a) Let us consider the ball B with radius 1/2 and center (1, 1, . . .) ∈ `∞ It consists of points y = (β1, β2, . . .)
with |βn − 1| < 1/2 for all n. We will only use that the real part <βn is at least 1/2 for all n. We claim that
for any such y there is no x ∈ `∞ such that (I − T )x = y, that is ran(I − T ) is disjoint from B. Assume that
(I − T )x = y for some x = (α1, α2, . . .). We get that α1 = β1, α2 = β1 + β2, α3 = β1 + β2 + β3, and so on. It
follows that <αn ≥ <β1 + · · ·+ <βn ≥ n/2, which contradicts that x = (α1, α2, . . .) ∈ `∞.
b) ‖T‖ = 1; σp(T ) = ∅. We claim that σr(T ) = σ(T ) is the closed unit ball. For |λ| < 1, the same argument
works as in the previous exercise: y = (1, λ, λ2, . . .) ∈ `1, so Λy ∈ `∗∞. It is easy to check that Λy(λI − T ) = 0,
so ran(λI − T ) is not dense; λ ∈ σr(T ). If |λ| = 1, then one can easily generalize the argument in a) to find a
ball that is disjoint from ran(λI − T ). Again, it follows that ran(λI − T ) is not dense, λ ∈ σr(T ).

10. a) Suppose that (I − T )x = y for some x = (α1, α2, . . .) ∈ `2 and y = (β1, β2, . . .) ∈ `2. It can be seen
easily that

αn = β1 + β2 + · · ·+ βn.

So for y = (1, 1/2, 1/4, . . .) ∈ `2 there exists no such y ∈ `2. This shows that ran(I − T ) 6= `2. Now we
prove that ran(I − T ) is dense. Clearly ran(I − T ) contains those vectors y = (β1, . . . , βN , 0, 0, . . .) for which
β1 + · · ·+ βN = 0. So it suffices to show that the set of such vectors is dense in `2. The key idea here is that
the sum of positive reals can be arbitrarily large while their square sum is arbitrarily small:

∞∑
n=N+1

1

n
=∞, but

∞∑
n=N+1

1

n2
→ 0 as N →∞.

So if some x = (α1, α2, . . .) ∈ `2 and ε > 0 are given, then first we pick m such that ‖x − xm‖ < ε/2 for
xm = (α1, . . . , αm, 0, 0, . . .). Then we replace finitely many of the 0’s by γ1, . . . , γk such that√√√√ k∑

i=1

|γi|2 <
ε

2
and α1 + · · ·+ αm + γ1 + · · · γk = 0.



Then x′m = (α1, . . . , αm, γ1, . . . , γk, 0, 0, . . .) has the desired form and ‖x− x′m‖ ≤ ‖x− xm‖+ ‖xm − x′m‖ < ε.
b) It is easy that ‖T‖ = 1, σp(T ) = ∅. If |λ| < 1, then Λy(λI − T ) = 0, where y = (1, λ, λ2, . . .) ∈ `2. It follows
that ran(λI − T ) is not dense, so λ ∈ σr(T ). If |λ| = 1, then ran(λI − T ) is dense (the proof is basically the
same as for λ = 1). It means that λ /∈ σr(T ). Consequently, σr(T ) is the open unit disc, while σ(T ) is the
closed unit disc.

11. Pick an arbitrary f ∈ C[0, 1] with ‖f‖ ≤ 1. Then f(x) ≤ 1 for all x ∈ [0, 1]. It follows that (Tf)(x) ≤ x,
(T 2f)(x) ≤ x2/2, (T 3f)(x) ≤ x3/6, and so on. One can show by induction that (T kf)(x) ≤ xk/k!. Similarly,
since f(x) ≥ −1 for all x, we obtain that (T kf)(x) ≥ −xk/k!. It follows that ‖T kf‖ ≤ 1/k! for any f with
‖f‖ ≤ 1. It means that the operator norm of T k is at most 1/k!. In fact, the constant 1 function shows that
‖T k‖ = 1/k!. Thus ‖T‖ = 1 and

r(T ) = inf
k

k

√
‖T k‖ = inf

k

1
k
√
k!

= 0.

The kernel of T is trivial (i.e., kerT = {0}), since Tf = 0 implies that f = 0 (note that Tf is differentiable
and its derivative is f). So T is injective. It is clearly not surjective, since Tf is always 0 at 0. Thus 0 ∈ σ(T ).
The spectrum has no other point, because it is contained by {λ : |λ| ≤ r(T )} = {0}. So σ(T ) = {0}. Finally,
we show that the range is not closed. It is not hard to see that ranT is the set of continuously differentiable
functions g with g(0) = 0. A sequence of such functions can clearly converge (in the supremum norm) to a
non-differentiable function.

12. We proved earlier that ‖S1S2‖ ≤ ‖S1‖ · ‖S2‖, where S1S2 is the composition of S1 and S2. Since Tm+n is
the composition of Tm and Tn:

‖Tm+n‖ = ‖TmTn‖ ≤ ‖Tm‖ · ‖Tn‖.
Taking logarithms of both sides: am+n ≤ am + an. It remains to show that for any such sequence

lim
k→∞

ak/k = inf
k
ak/k.

Clearly, lim infk→∞ ak/k ≥ infk ak/k; it suffices to show that lim supk→∞ ak/k ≤ infk ak/k. We need that for
any fixed m we have lim supk→∞ ak/k ≤ am/m. Any k can be written as sm + r with 0 ≤ r < m. We know
that ak = asm+r ≤ asm + ar ≤ s · am + ar. Thus

ak
k
≤ s · am

k
+
ar
k
≤ s · am

sm
+
ar
k

=
am
m

+
ar
k
.

The right-hand side tends to am/m as k →∞, we are done.

13. We use that
T−1 − S−1 = S−1 (S − T )T−1.

It follows that

‖T−1 − S−1‖ ≤ ‖S−1‖‖S − T‖‖T−1‖ ≤ ‖S−1‖ 1

2 ‖T−1‖
‖T−1‖ =

1

2
‖S−1‖,

which yields that

‖T−1‖ ≥ ‖S−1‖ − ‖T−1 − S−1‖ ≥ ‖S−1‖ − 1

2
‖S−1‖ =

1

2
‖S−1‖.

14. Let S be the left shift operator on `1. We notice that T = 1 + S + S2. Let p(z) = 1 + z + z2. Using the
spectral mapping theorem and the fact that the spectrum of S is the closed unit disk:

σ(T ) =
{

1 + z + z2 : ‖z‖ ≤ 1
}
.

To determine its intersection with the real axis, we need to determine the set of real numbers c for which the
equation

1 + z + z2 = c⇔ z2 + z + (1− c) = 0

has a solution with |z| ≤ 1. Solving this quadratic equation:

z =
−1±

√
1− 4(1− c)

2
=
−1

2
±
√
c− 3

4
.

It is easy to check that the exact condition of at least one root being in the closed unit disk is that 0 ≤ c ≤ 3.
So the intersection in question is [0, 3]. (Note that we would get a different set if we took the intersection
σ(S) ∩ R = [−1, 1] and then took the image of this set under p, which is [3/4, 3].)



15. It is clearly enough to show that r(TS) ≤ r(ST ). The key observation is the following:

(TS)k = TSTS · · ·TS = T (STST · · ·ST )S = T (ST )k−1S.

Then
‖(TS)k‖ ≤ ‖T‖‖(ST )k−1‖‖S‖.

Let ε > 0; then for any large enough k we have

k−1

√
‖(ST )k−1‖ < r(ST ) + ε.

Consequently,

‖(TS)k‖ ≤ ‖T‖‖S‖ (r(ST ) + ε)
k−1

=
‖T‖‖S‖
r(ST ) + ε

(r(ST ) + ε)
k
.

Taking k-th root, then taking the limit as k → ∞ we get that r(TS) ≤ r(ST ) + ε. Since this holds for any
ε > 0, it follows that r(TS) ≤ r(ST ).

16. Pick q ∈ R such that r(T ) < q < 1. We know that ‖T k‖ < qk for large enough k. We set

Sk = I + T + T 2 + · · ·+ T k−1.

It is easy to see that Sk is a Cauchy sequence in B(X). Since X is complete, so is B(X), which yields that
Sk is convergent. Let S ∈ B(X) denote the the limit of Sk, that is, ‖S − Sk‖ → 0. We need to show that
S(I − T ) = (I − T )S = I. Since

Sk(I − T ) = (I + T + · · ·+ T k−1)(I − T ) = I − T k,

we have
‖Sk(I − T )− I‖ = ‖T k‖ → 0 as k →∞.

Consequently,

‖S(I − T )− I‖ = ‖S(I − T )− Sk(I − T ) + Sk(I − T )− I‖ ≤
‖(S − Sk)(I − T )‖+ ‖Sk(I − T )− I‖ ≤ ‖S − Sk‖‖I − T‖+ ‖Sk(I − T )− I‖ → 0

as k →∞. It follows that S(I − T ) = I. Proving that (I − T )S = I is similar.

17.* a) We know from previous exercises that if r(ST ) < 1 ⇔ r(TS) < 1, then both I − ST and I − TS are
invertible. However, this does not help us when r(ST ) ≥ 1.

Suppose that I − ST is invertible, let U ∈ B(X) be the inverse, that is, U(I − ST ) = (I − ST )U = I.
We need to find an inverse operator V for I − TS. To get an idea how to define V , we consider the case
r(ST ) = r(TS) < 1. Then U = I + ST + STST + · · · and V = I + TS + TSTS + · · · . Clearly, V = I + TUS.
So we will define V with this formula in the general case. Then using U(I − ST ) = I:

V (I − TS) = (I + TUS)(I − TS) = I − TS + TUS − TUSTS =

I + T (−I + U − UST )S = I + S (U(I − ST )− I)T = I.

Proving that (I − TS)V = I is similar.
b) Using the first part we get that for any λ 6= 0:

λ /∈ σ(ST )⇔ λI−ST invertible ⇔ I−S
λ
T invertible ⇔ I−T S

λ
invertible ⇔ λI−TS invertible ⇔ λ /∈ σ(ST ).


