Functional Analysis, BSM, Spring 2012 Exercise sheet: Spectra of operators Solutions

1. We proved earlier that ker T is a linear subspace. Since T is bounded, it is continuous, so the preimage of any closed set is closed. However, ker T is the preimage of $\{0\} \subset Y$, which is clearly a closed set.

2. a) If $y_1, y_2 \in \operatorname{ran} T$, then $\exists x_1, x_2 \in X$ with $Tx_1 = y_1$ and $Tx_2 = y_2$. Thus $y_1 + y_2 = T(x_1 + x_2) \in \operatorname{ran} T$. If $\alpha \in \mathbb{C}$, then $\alpha y_1 = T(\alpha x_1) \in \operatorname{ran} T$.

b) Let y = (1, 1/2, 1/3, ...) and let $y_n = (1, 1/2, 1/3, ..., 1/n, 0, 0, ...)$. It is easy to check that $y, y_n \in \ell_2$ and $\|y - y_n\|_2 \to 0$ as $n \to \infty$. However, $y_n \in \operatorname{ran} T$, but $y \notin \operatorname{ran} T$, which implies that $\operatorname{ran} T$ is not closed.

3. Let $y_1, y_2, \ldots \in \operatorname{ran} T$ converging to $y \in Y$. We need to show that $y \in \operatorname{ran} T$, too. There exists $x_n \in X$ such that $Tx_n = y_n$. Since T is bounded below, we have

$$||x_n - x_m|| \le \frac{1}{c} ||Tx_n - Tx_m|| = \frac{1}{c} ||y_n - y_m||.$$

However, (y_n) is Cauchy (because it is convergent), thus so is (x_n) . Since X is complete, (x_n) is convergent: $||x_n - x|| \to 0$ as $n \to \infty$. Using that T is continuous, we get that $Tx_n = y_n$ converges to Tx. Thus y = Tx; it follows that $y \in \operatorname{ran} T$.

4. First suppose that T is invertible. Then T is surjective, so ran T = Y is indeed dense. Since T^{-1} is bounded, we get

$$||x|| = ||T^{-1}Tx|| \le ||T^{-1}|| ||Tx||,$$

which implies that $||Tx|| \ge c||x||$ with $c = 1/||T^{-1}||$.

Now suppose that T is bounded below and ran T is dense. By the previous exercise ran T must be closed, thus ran T = X, that is, T is surjective. Also, T is injective, because if Tx = 0, then $||x|| \leq ||Tx||/c = 0$, so x = 0. Consequently, T is bijective. By the inverse mapping theorem it follows that T is invertible.

5. a) We saw earlier that ||T|| = 1 and that $\sigma_p(T)$ (the set of eigenvalues) is the closed unit disk $\{\lambda \in \mathbb{C} : |\lambda| \le 1\}$. (The vector $(1, \lambda, \lambda^2, \ldots) \in \ell_{\infty}$ is an eigenvector for λ .) b) It holds for arbitrary T that

$$\sigma_p(T) \subset \sigma(T) \subset \{\lambda \in \mathbb{C} : |\lambda| \le ||T||\}.$$

Here both the left-hand side and the right-hand side are the closed unit disk. It follows that $\sigma(T)$ is also the closed unit disk. Finally, the residual spectrum is empty, because $\sigma_r(T) \subset \sigma(T) \setminus \sigma_p(T)$.

6. a) Since ||T|| = 1, $\sigma(T)$ is contained by the closed unit disk. On the other hand, $\sigma_p(T)$ is the open unit disk $\{\lambda \in \mathbb{C} : |\lambda| < 1\}$; $\sigma_p(T) \subset \sigma(T)$ and $\sigma(T)$ is closed, so $\sigma(T)$ must contain the closure of $\sigma_p(T)$, which is the closed unit disk again. Hence $\sigma(T) = \{\lambda \in \mathbb{C} : |\lambda| \le 1\}$.

b) For the operator I - T we have

$$I - T : x = (\alpha_1, \alpha_2, \alpha_3, \ldots) \mapsto (\alpha_1 - \alpha_2, \alpha_2 - \alpha_3, \alpha_3 - \alpha_4, \ldots)$$

For given β_1, \ldots, β_n , we need to solve the equation $(I-T)x = (\beta_1, \beta_2, \ldots, \beta_n, 0, 0, \ldots)$. We get that $\alpha_2 = \alpha_1 - \beta_1$, $\alpha_3 = \alpha_1 - \beta_1 - \beta_2$, and so on. For m > n we get

$$\alpha_m = \alpha_1 - \beta_1 - \beta_2 - \dots - \beta_n.$$

So if we set $\alpha_1 = \beta_1 + \cdots + \beta_n$, then $\alpha_m = 0$ for all m > n and we get a solution $x \in \ell_1$. c) Since $1 \in \sigma(T)$, I - T is not bijective. Since $1 \notin \sigma_p(T)$, I - T is injective. Consequently, I - T cannot be surjective: ran $(I - T) \neq \ell_1$. Actually, it is not hard to show that

$$y = \left(\frac{1}{1 \cdot 2}, \frac{1}{2 \cdot 3}, \frac{1}{3 \cdot 4}, \frac{1}{4 \cdot 5}, \dots\right) \notin \operatorname{ran}(I - T).$$

We will use that

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n\cdot (n+1)} = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 - \frac{1}{n+1}.$$

When we solve (I - T)x = y, then we get that

$$\alpha_{n+1} = \alpha_1 - 1 + \frac{1}{n+1}.$$

We would need a solution for which $\sum_{n} |\alpha_{n}| < \infty$. We can only hope this if $\alpha_{n} \to 0$ as $n \to \infty$. Consequently, we have to set $\alpha_{1} = 1$. Then $\alpha_{n+1} = 1/(n+1)$. However, the sum of these is infinite. Thus we proved that there is no $x \in \ell_{1}$ with (I - T)x = y; so $y \notin \operatorname{ran} T$.

d) Since $\sigma_r(T) \subset \sigma(T) \setminus \sigma_p(T) = \{\lambda \in \mathbb{C} : |\lambda| = 1\}$, we need to check the complex numbers of unit length. We proved that $\operatorname{ran}(I - T)$ is dense. Basically the same proof shows that $\operatorname{ran}(\lambda I - T)$ is dense for any $|\lambda| = 1$. It follows that $\sigma_r(T) = \emptyset$.

7. If such a Λ exists, then ran $T \subset \ker \Lambda$. However, ker Λ is a closed proper subspace of X, so the closure of ran T is also contained by ker Λ , so it cannot be the whole space, ran T is not dense.

To prove the other direction, suppose that ran T is not dense. Then the closure of ran T is a closed proper subspace $Y \leq X$. Pick some $x \in X \setminus Y$. Using the Hahn-Banach theorem it is not hard to prove the existence of a bounded linear functional $\Lambda \in X^*$ for which $\Lambda y = 0$ for $y \in Y$ and $\Lambda x = 1$. Then $\Lambda \neq 0$, but $\Lambda T = 0$.

8. a) We saw earlier that ||T|| = 1 and $\sigma_p(T) = \emptyset$. b) For $|\lambda| \le 1$ consider the vector

$$y = (1, \lambda, \lambda^2, \lambda^3, \ldots) \in \ell_{\infty}$$

and the corresponding bounded linear functional $\Lambda_y \in \ell_1^*$. We claim that $\Lambda_y(\lambda I - T) = 0$. Indeed, for an arbitrary $x = (\alpha_1, \alpha_2, \ldots) \in \ell_1$:

$$\Lambda_y(\lambda I - T)x = \Lambda_y(\lambda \alpha_1, \lambda \alpha_2 - \alpha_1, \lambda \alpha_3 - \alpha_2, \ldots) = \lambda \alpha_1 + \lambda(\lambda \alpha_2 - \alpha_1) + \lambda^2(\lambda \alpha_3 - \alpha_2) + \cdots = 0.$$

By the previous exercise it follows that $\operatorname{ran}(\lambda I - T)$ is not dense, so $\lambda \in \sigma_r(T)$ for $|\lambda| \leq 1$. c) $\sigma_r(T) = \sigma(T) = \{\lambda \in \mathbb{C} : |\lambda| \leq 1\}.$

9. a) Let us consider the ball B with radius 1/2 and center $(1, 1, \ldots) \in \ell_{\infty}$ It consists of points $y = (\beta_1, \beta_2, \ldots)$ with $|\beta_n - 1| < 1/2$ for all n. We will only use that the real part $\Re\beta_n$ is at least 1/2 for all n. We claim that for any such y there is no $x \in \ell_{\infty}$ such that (I - T)x = y, that is $\operatorname{ran}(I - T)$ is disjoint from B. Assume that (I - T)x = y for some $x = (\alpha_1, \alpha_2, \ldots)$. We get that $\alpha_1 = \beta_1, \alpha_2 = \beta_1 + \beta_2, \alpha_3 = \beta_1 + \beta_2 + \beta_3$, and so on. It follows that $\Re\alpha_n \geq \Re\beta_1 + \cdots + \Re\beta_n \geq n/2$, which contradicts that $x = (\alpha_1, \alpha_2, \ldots) \in \ell_{\infty}$.

b) ||T|| = 1; $\sigma_p(T) = \emptyset$. We claim that $\sigma_r(T) = \sigma(T)$ is the closed unit ball. For $|\lambda| < 1$, the same argument works as in the previous exercise: $y = (1, \lambda, \lambda^2, \ldots) \in \ell_1$, so $\Lambda_y \in \ell_{\infty}^*$. It is easy to check that $\Lambda_y(\lambda I - T) = 0$, so $\operatorname{ran}(\lambda I - T)$ is not dense; $\lambda \in \sigma_r(T)$. If $|\lambda| = 1$, then one can easily generalize the argument in a) to find a ball that is disjoint from $\operatorname{ran}(\lambda I - T)$. Again, it follows that $\operatorname{ran}(\lambda I - T)$ is not dense, $\lambda \in \sigma_r(T)$.

10. a) Suppose that (I - T)x = y for some $x = (\alpha_1, \alpha_2, \ldots) \in \ell_2$ and $y = (\beta_1, \beta_2, \ldots) \in \ell_2$. It can be seen easily that

$$\alpha_n = \beta_1 + \beta_2 + \dots + \beta_n.$$

So for $y = (1, 1/2, 1/4, ...) \in \ell_2$ there exists no such $y \in \ell_2$. This shows that $\operatorname{ran}(I - T) \neq \ell_2$. Now we prove that $\operatorname{ran}(I - T)$ is dense. Clearly $\operatorname{ran}(I - T)$ contains those vectors $y = (\beta_1, \ldots, \beta_N, 0, 0, \ldots)$ for which $\beta_1 + \cdots + \beta_N = 0$. So it suffices to show that the set of such vectors is dense in ℓ_2 . The key idea here is that the sum of positive reals can be arbitrarily large while their square sum is arbitrarily small:

$$\sum_{n=N+1}^{\infty} \frac{1}{n} = \infty, \text{ but } \sum_{n=N+1}^{\infty} \frac{1}{n^2} \to 0 \text{ as } N \to \infty.$$

So if some $x = (\alpha_1, \alpha_2, \ldots) \in \ell_2$ and $\varepsilon > 0$ are given, then first we pick m such that $||x - x_m|| < \varepsilon/2$ for $x_m = (\alpha_1, \ldots, \alpha_m, 0, 0, \ldots)$. Then we replace finitely many of the 0's by $\gamma_1, \ldots, \gamma_k$ such that

$$\sqrt{\sum_{i=1}^{k} |\gamma_i|^2} < \frac{\varepsilon}{2} \text{ and } \alpha_1 + \dots + \alpha_m + \gamma_1 + \dots + \gamma_k = 0.$$

Then $x'_m = (\alpha_1, \ldots, \alpha_m, \gamma_1, \ldots, \gamma_k, 0, 0, \ldots)$ has the desired form and $||x - x'_m|| \le ||x - x_m|| + ||x_m - x'_m|| < \varepsilon$. b) It is easy that ||T|| = 1, $\sigma_p(T) = \emptyset$. If $|\lambda| < 1$, then $\Lambda_y(\lambda I - T) = 0$, where $y = (1, \lambda, \lambda^2, \ldots) \in \ell_2$. It follows that $\operatorname{ran}(\lambda I - T)$ is not dense, so $\lambda \in \sigma_r(T)$. If $|\lambda| = 1$, then $\operatorname{ran}(\lambda I - T)$ is dense (the proof is basically the same as for $\lambda = 1$). It means that $\lambda \notin \sigma_r(T)$. Consequently, $\sigma_r(T)$ is the open unit disc, while $\sigma(T)$ is the closed unit disc.

11. Pick an arbitrary $f \in C[0,1]$ with $||f|| \leq 1$. Then $f(x) \leq 1$ for all $x \in [0,1]$. It follows that $(Tf)(x) \leq x$, $(T^2f)(x) \leq x^2/2$, $(T^3f)(x) \leq x^3/6$, and so on. One can show by induction that $(T^kf)(x) \leq x^k/k!$. Similarly, since $f(x) \geq -1$ for all x, we obtain that $(T^kf)(x) \geq -x^k/k!$. It follows that $||T^kf|| \leq 1/k!$ for any f with $||f|| \leq 1$. It means that the operator norm of T^k is at most 1/k!. In fact, the constant 1 function shows that $||T^k|| = 1/k!$. Thus ||T|| = 1 and

$$r(T) = \inf_{k} \sqrt[k]{\|T^{k}\|} = \inf_{k} \frac{1}{\sqrt[k]{k!}} = 0.$$

The kernel of T is trivial (i.e., ker $T = \{0\}$), since Tf = 0 implies that f = 0 (note that Tf is differentiable and its derivative is f). So T is injective. It is clearly not surjective, since Tf is always 0 at 0. Thus $0 \in \sigma(T)$. The spectrum has no other point, because it is contained by $\{\lambda : |\lambda| \le r(T)\} = \{0\}$. So $\sigma(T) = \{0\}$. Finally, we show that the range is not closed. It is not hard to see that ran T is the set of continuously differentiable functions g with g(0) = 0. A sequence of such functions can clearly converge (in the supremum norm) to a non-differentiable function.

12. We proved earlier that $||S_1S_2|| \le ||S_1|| \cdot ||S_2||$, where S_1S_2 is the composition of S_1 and S_2 . Since T^{m+n} is the composition of T^m and T^n :

$$|T^{m+n}|| = ||T^m T^n|| \le ||T^m|| \cdot ||T^n||.$$

Taking logarithms of both sides: $a_{m+n} \leq a_m + a_n$. It remains to show that for any such sequence

$$\lim_{k \to \infty} a_k / k = \inf_k a_k / k.$$

Clearly, $\liminf_{k\to\infty} a_k/k \ge \inf_k a_k/k$; it suffices to show that $\limsup_{k\to\infty} a_k/k \le \inf_k a_k/k$. We need that for any fixed m we have $\limsup_{k\to\infty} a_k/k \le a_m/m$. Any k can be written as sm + r with $0 \le r < m$. We know that $a_k = a_{sm+r} \le a_{sm} + a_r \le s \cdot a_m + a_r$. Thus

$$\frac{a_k}{k} \leq \frac{s \cdot a_m}{k} + \frac{a_r}{k} \leq \frac{s \cdot a_m}{sm} + \frac{a_r}{k} = \frac{a_m}{m} + \frac{a_r}{k}$$

The right-hand side tends to a_m/m as $k \to \infty$, we are done.

13. We use that

$$T^{-1} - S^{-1} = S^{-1} \left(S - T \right) T^{-1}.$$

It follows that

$$||T^{-1} - S^{-1}|| \le ||S^{-1}|| ||S - T|| ||T^{-1}|| \le ||S^{-1}|| \frac{1}{2||T^{-1}||} ||T^{-1}|| = \frac{1}{2} ||S^{-1}||,$$

which yields that

$$||T^{-1}|| \ge ||S^{-1}|| - ||T^{-1} - S^{-1}|| \ge ||S^{-1}|| - \frac{1}{2}||S^{-1}|| = \frac{1}{2}||S^{-1}||$$

14. Let S be the left shift operator on ℓ_1 . We notice that $T = 1 + S + S^2$. Let $p(z) = 1 + z + z^2$. Using the spectral mapping theorem and the fact that the spectrum of S is the closed unit disk:

$$\sigma(T) = \left\{ 1 + z + z^2 : \|z\| \le 1 \right\}$$

To determine its intersection with the real axis, we need to determine the set of real numbers c for which the equation

$$1 + z + z^{2} = c \Leftrightarrow z^{2} + z + (1 - c) = 0$$

has a solution with $|z| \leq 1$. Solving this quadratic equation:

$$z = \frac{-1 \pm \sqrt{1 - 4(1 - c)}}{2} = \frac{-1}{2} \pm \sqrt{c - \frac{3}{4}}.$$

It is easy to check that the exact condition of at least one root being in the closed unit disk is that $0 \le c \le 3$. So the intersection in question is [0,3]. (Note that we would get a different set if we took the intersection $\sigma(S) \cap \mathbb{R} = [-1,1]$ and then took the image of this set under p, which is [3/4,3].) 15. It is clearly enough to show that $r(TS) \leq r(ST)$. The key observation is the following:

$$(TS)^{k} = TSTS \cdots TS = T(STST \cdots ST)S = T(ST)^{k-1}S.$$

Then

$$||(TS)^{k}|| \le ||T|| ||(ST)^{k-1}|| ||S||.$$

Let $\varepsilon > 0$; then for any large enough k we have

$$\sqrt[k-1]{\|(ST)^{k-1}\|} < r(ST) + \varepsilon$$

Consequently,

$$||(TS)^{k}|| \le ||T|| ||S|| (r(ST) + \varepsilon)^{k-1} = \frac{||T|| ||S||}{r(ST) + \varepsilon} (r(ST) + \varepsilon)^{k}.$$

Taking k-th root, then taking the limit as $k \to \infty$ we get that $r(TS) \leq r(ST) + \varepsilon$. Since this holds for any $\varepsilon > 0$, it follows that $r(TS) \leq r(ST)$.

16. Pick $q \in \mathbb{R}$ such that r(T) < q < 1. We know that $||T^k|| < q^k$ for large enough k. We set

$$S_k = I + T + T^2 + \dots + T^{k-1}$$

It is easy to see that S_k is a Cauchy sequence in B(X). Since X is complete, so is B(X), which yields that S_k is convergent. Let $S \in B(X)$ denote the limit of S_k , that is, $||S - S_k|| \to 0$. We need to show that S(I - T) = (I - T)S = I. Since

$$S_k(I-T) = (I+T+\dots+T^{k-1})(I-T) = I-T^k,$$

we have

$$||S_k(I-T) - I|| = ||T^k|| \to 0 \text{ as } k \to \infty.$$

Consequently,

$$||S(I-T) - I|| = ||S(I-T) - S_k(I-T) + S_k(I-T) - I|| \le ||S - S_k|| ||I - T|| + ||S_k(I-T) - I|| \to 0$$

as $k \to \infty$. It follows that S(I - T) = I. Proving that (I - T)S = I is similar.

17.* a) We know from previous exercises that if $r(ST) < 1 \Leftrightarrow r(TS) < 1$, then both I - ST and I - TS are invertible. However, this does not help us when $r(ST) \ge 1$.

Suppose that I - ST is invertible, let $U \in B(X)$ be the inverse, that is, U(I - ST) = (I - ST)U = I. We need to find an inverse operator V for I - TS. To get an idea how to define V, we consider the case r(ST) = r(TS) < 1. Then $U = I + ST + STST + \cdots$ and $V = I + TS + TSTS + \cdots$. Clearly, V = I + TUS. So we will define V with this formula in the general case. Then using U(I - ST) = I:

$$\begin{split} V(I-TS) &= (I+TUS)(I-TS) = I-TS+TUS-TUSTS = \\ & I+T(-I+U-UST)S = I+S\left(U(I-ST)-I\right)T = I. \end{split}$$

Proving that (I - TS)V = I is similar.

b) Using the first part we get that for any $\lambda \neq 0$:

$$\lambda \notin \sigma(ST) \Leftrightarrow \lambda I - ST \text{ invertible } \Leftrightarrow I - \frac{S}{\lambda}T \text{ invertible } \Leftrightarrow I - T\frac{S}{\lambda} \text{ invertible } \Leftrightarrow \lambda I - TS \text{ invertible } \Leftrightarrow \lambda \notin \sigma(ST).$$