Functional Analysis, BSM, Spring 2012

Exercise sheet: Spectra of operators

Solutions

1. We proved earlier that ker T is a linear subspace. Since T is bounded, it is continuous, so the preimage of any closed set is closed. However, $\operatorname{ker} T$ is the preimage of $\{0\} \subset Y$, which is clearly a closed set.
2. a) If $y_{1}, y_{2} \in \operatorname{ran} T$, then $\exists x_{1}, x_{2} \in X$ with $T x_{1}=y_{1}$ and $T x_{2}=y_{2}$. Thus $y_{1}+y_{2}=T\left(x_{1}+x_{2}\right) \in \operatorname{ran} T$. If $\alpha \in \mathbb{C}$, then $\alpha y_{1}=T\left(\alpha x_{1}\right) \in \operatorname{ran} T$.
b) Let $y=(1,1 / 2,1 / 3, \ldots)$ and let $y_{n}=(1,1 / 2,1 / 3, \ldots, 1 / n, 0,0, \ldots)$. It is easy to check that $y, y_{n} \in \ell_{2}$ and $\left\|y-y_{n}\right\|_{2} \rightarrow 0$ as $n \rightarrow \infty$. However, $y_{n} \in \operatorname{ran} T$, but $y \notin \operatorname{ran} T$, which implies that $\operatorname{ran} T$ is not closed.
3. Let $y_{1}, y_{2}, \ldots \in \operatorname{ran} T$ converging to $y \in Y$. We need to show that $y \in \operatorname{ran} T$, too. There exists $x_{n} \in X$ such that $T x_{n}=y_{n}$. Since T is bounded below, we have

$$
\left\|x_{n}-x_{m}\right\| \leq \frac{1}{c}\left\|T x_{n}-T x_{m}\right\|=\frac{1}{c}\left\|y_{n}-y_{m}\right\| .
$$

However, $\left(y_{n}\right)$ is Cauchy (because it is convergent), thus so is $\left(x_{n}\right)$. Since X is complete, $\left(x_{n}\right)$ is convergent: $\left\|x_{n}-x\right\| \rightarrow 0$ as $n \rightarrow \infty$. Using that T is continuous, we get that $T x_{n}=y_{n}$ converges to $T x$. Thus $y=T x$; it follows that $y \in \operatorname{ran} T$.
4. First suppose that T is invertible. Then T is surjective, so $\operatorname{ran} T=Y$ is indeed dense. Since T^{-1} is bounded, we get

$$
\|x\|=\left\|T^{-1} T x\right\| \leq\left\|T^{-1}\right\|\|T x\|
$$

which implies that $\|T x\| \geq c\|x\|$ with $c=1 /\left\|T^{-1}\right\|$.
Now suppose that T is bounded below and $\operatorname{ran} T$ is dense. By the previous exercise $\operatorname{ran} T$ must be closed, thus $\operatorname{ran} T=X$, that is, T is surjective. Also, T is injective, because if $T x=0$, then $\|x\| \leq\|T x\| / c=0$, so $x=0$. Consequently, T is bijective. By the inverse mapping theorem it follows that T is invertible.
5. a) We saw earlier that $\|T\|=1$ and that $\sigma_{p}(T)$ (the set of eigenvalues) is the closed unit disk $\{\lambda \in \mathbb{C}:|\lambda| \leq 1\}$. (The vector $\left(1, \lambda, \lambda^{2}, \ldots\right) \in \ell_{\infty}$ is an eigenvector for λ.)
b) It holds for arbitrary T that

$$
\sigma_{p}(T) \subset \sigma(T) \subset\{\lambda \in \mathbb{C}:|\lambda| \leq\|T\|\}
$$

Here both the left-hand side and the right-hand side are the closed unit disk. It follows that $\sigma(T)$ is also the closed unit disk. Finally, the residual spectrum is empty, because $\sigma_{r}(T) \subset \sigma(T) \backslash \sigma_{p}(T)$.
6. a) Since $\|T\|=1, \sigma(T)$ is contained by the closed unit disk. On the other hand, $\sigma_{p}(T)$ is the open unit disk $\{\lambda \in \mathbb{C}:|\lambda|<1\} ; \sigma_{p}(T) \subset \sigma(T)$ and $\sigma(T)$ is closed, so $\sigma(T)$ must contain the closure of $\sigma_{p}(T)$, which is the closed unit disk again. Hence $\sigma(T)=\{\lambda \in \mathbb{C}:|\lambda| \leq 1\}$.
b) For the operator $I-T$ we have

$$
I-T: x=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right) \mapsto\left(\alpha_{1}-\alpha_{2}, \alpha_{2}-\alpha_{3}, \alpha_{3}-\alpha_{4}, \ldots\right)
$$

For given β, \ldots, β_{n}, we need to solve the equation $(I-T) x=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}, 0,0, \ldots\right)$. We get that $\alpha_{2}=\alpha_{1}-\beta_{1}$, $\alpha_{3}=\alpha_{1}-\beta_{1}-\beta_{2}$, and so on. For $m>n$ we get

$$
\alpha_{m}=\alpha_{1}-\beta_{1}-\beta_{2}-\cdots-\beta_{n} .
$$

So if we set $\alpha_{1}=\beta_{1}+\cdots+\beta_{n}$, then $\alpha_{m}=0$ for all $m>n$ and we get a solution $x \in \ell_{1}$.
c) Since $1 \in \sigma(T), I-T$ is not bijective. Since $1 \notin \sigma_{p}(T), I-T$ is injective. Consequently, $I-T$ cannot be surjective: $\operatorname{ran}(I-T) \neq \ell_{1}$. Actually, it is not hard to show that

$$
y=\left(\frac{1}{1 \cdot 2}, \frac{1}{2 \cdot 3}, \frac{1}{3 \cdot 4}, \frac{1}{4 \cdot 5}, \ldots\right) \notin \operatorname{ran}(I-T)
$$

We will use that

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{n \cdot(n+1)}=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\cdots+\left(\frac{1}{n}-\frac{1}{n+1}\right)=1-\frac{1}{n+1} .
$$

When we solve $(I-T) x=y$, then we get that

$$
\alpha_{n+1}=\alpha_{1}-1+\frac{1}{n+1} .
$$

We would need a solution for which $\sum_{n}\left|\alpha_{n}\right|<\infty$. We can only hope this if $\alpha_{n} \rightarrow 0$ as $n \rightarrow \infty$. Consequently, we have to set $\alpha_{1}=1$. Then $\alpha_{n+1}=1 /(n+1)$. However, the sum of these is infinite. Thus we proved that there is no $x \in \ell_{1}$ with $(I-T) x=y$; so $y \notin \operatorname{ran} T$.
d) Since $\sigma_{r}(T) \subset \sigma(T) \backslash \sigma_{p}(T)=\{\lambda \in \mathbb{C}:|\lambda|=1\}$, we need to check the complex numbers of unit length. We proved that $\operatorname{ran}(I-T)$ is dense. Basically the same proof shows that $\operatorname{ran}(\lambda I-T)$ is dense for any $|\lambda|=1$. It follows that $\sigma_{r}(T)=\emptyset$.
7. If such a Λ exists, then $\operatorname{ran} T \subset \operatorname{ker} \Lambda$. However, $\operatorname{ker} \Lambda$ is a closed proper subspace of X, so the closure of $\operatorname{ran} T$ is also contained by $\operatorname{ker} \Lambda$, so it cannot be the whole space, $\operatorname{ran} T$ is not dense.

To prove the other direction, suppose that $\operatorname{ran} T$ is not dense. Then the closure of $\operatorname{ran} T$ is a closed proper subspace $Y \leq X$. Pick some $x \in X \backslash Y$. Using the Hahn-Banach theorem it is not hard to prove the existence of a bounded linear functional $\Lambda \in X^{*}$ for which $\Lambda y=0$ for $y \in Y$ and $\Lambda x=1$. Then $\Lambda \neq 0$, but $\Lambda T=0$.
8. a) We saw earlier that $\|T\|=1$ and $\sigma_{p}(T)=\emptyset$.
b) For $|\lambda| \leq 1$ consider the vector

$$
y=\left(1, \lambda, \lambda^{2}, \lambda^{3}, \ldots\right) \in \ell_{\infty}
$$

and the corresponding bounded linear functional $\Lambda_{y} \in \ell_{1}^{*}$. We claim that $\Lambda_{y}(\lambda I-T)=0$. Indeed, for an arbitrary $x=\left(\alpha_{1}, \alpha_{2}, \ldots\right) \in \ell_{1}$:

$$
\Lambda_{y}(\lambda I-T) x=\Lambda_{y}\left(\lambda \alpha_{1}, \lambda \alpha_{2}-\alpha_{1}, \lambda \alpha_{3}-\alpha_{2}, \ldots\right)=\lambda \alpha_{1}+\lambda\left(\lambda \alpha_{2}-\alpha_{1}\right)+\lambda^{2}\left(\lambda \alpha_{3}-\alpha_{2}\right)+\cdots=0
$$

By the previous exercise it follows that $\operatorname{ran}(\lambda I-T)$ is not dense, so $\lambda \in \sigma_{r}(T)$ for $|\lambda| \leq 1$.
c) $\sigma_{r}(T)=\sigma(T)=\{\lambda \in \mathbb{C}:|\lambda| \leq 1\}$.
9. a) Let us consider the ball B with radius $1 / 2$ and center $(1,1, \ldots) \in \ell_{\infty}$ It consists of points $y=\left(\beta_{1}, \beta_{2}, \ldots\right)$ with $\left|\beta_{n}-1\right|<1 / 2$ for all n. We will only use that the real part $\Re \beta_{n}$ is at least $1 / 2$ for all n. We claim that for any such y there is no $x \in \ell_{\infty}$ such that $(I-T) x=y$, that is $\operatorname{ran}(I-T)$ is disjoint from B. Assume that $(I-T) x=y$ for some $x=\left(\alpha_{1}, \alpha_{2}, \ldots\right)$. We get that $\alpha_{1}=\beta_{1}, \alpha_{2}=\beta_{1}+\beta_{2}, \alpha_{3}=\beta_{1}+\beta_{2}+\beta_{3}$, and so on. It follows that $\Re \alpha_{n} \geq \Re \beta_{1}+\cdots+\Re \beta_{n} \geq n / 2$, which contradicts that $x=\left(\alpha_{1}, \alpha_{2}, \ldots\right) \in \ell_{\infty}$.
b) $\|T\|=1 ; \sigma_{p}(T)=\emptyset$. We claim that $\sigma_{r}(T)=\sigma(T)$ is the closed unit ball. For $|\lambda|<1$, the same argument works as in the previous exercise: $y=\left(1, \lambda, \lambda^{2}, \ldots\right) \in \ell_{1}$, so $\Lambda_{y} \in \ell_{\infty}^{*}$. It is easy to check that $\Lambda_{y}(\lambda I-T)=0$, so $\operatorname{ran}(\lambda I-T)$ is not dense; $\lambda \in \sigma_{r}(T)$. If $|\lambda|=1$, then one can easily generalize the argument in a) to find a ball that is disjoint from $\operatorname{ran}(\lambda I-T)$. Again, it follows that $\operatorname{ran}(\lambda I-T)$ is not dense, $\lambda \in \sigma_{r}(T)$.
10. a) Suppose that $(I-T) x=y$ for some $x=\left(\alpha_{1}, \alpha_{2}, \ldots\right) \in \ell_{2}$ and $y=\left(\beta_{1}, \beta_{2}, \ldots\right) \in \ell_{2}$. It can be seen easily that

$$
\alpha_{n}=\beta_{1}+\beta_{2}+\cdots+\beta_{n}
$$

So for $y=(1,1 / 2,1 / 4, \ldots) \in \ell_{2}$ there exists no such $y \in \ell_{2}$. This shows that $\operatorname{ran}(I-T) \neq \ell_{2}$. Now we prove that $\operatorname{ran}(I-T)$ is dense. Clearly $\operatorname{ran}(I-T)$ contains those vectors $y=\left(\beta_{1}, \ldots, \beta_{N}, 0,0, \ldots\right)$ for which $\beta_{1}+\cdots+\beta_{N}=0$. So it suffices to show that the set of such vectors is dense in ℓ_{2}. The key idea here is that the sum of positive reals can be arbitrarily large while their square sum is arbitrarily small:

$$
\sum_{n=N+1}^{\infty} \frac{1}{n}=\infty, \text { but } \sum_{n=N+1}^{\infty} \frac{1}{n^{2}} \rightarrow 0 \text { as } N \rightarrow \infty
$$

So if some $x=\left(\alpha_{1}, \alpha_{2}, \ldots\right) \in \ell_{2}$ and $\varepsilon>0$ are given, then first we pick m such that $\left\|x-x_{m}\right\|<\varepsilon / 2$ for $x_{m}=\left(\alpha_{1}, \ldots, \alpha_{m}, 0,0, \ldots\right)$. Then we replace finitely many of the 0 's by $\gamma_{1}, \ldots, \gamma_{k}$ such that

$$
\sqrt{\sum_{i=1}^{k}\left|\gamma_{i}\right|^{2}}<\frac{\varepsilon}{2} \text { and } \alpha_{1}+\cdots+\alpha_{m}+\gamma_{1}+\cdots \gamma_{k}=0 .
$$

Then $x_{m}^{\prime}=\left(\alpha_{1}, \ldots, \alpha_{m}, \gamma_{1}, \ldots, \gamma_{k}, 0,0, \ldots\right)$ has the desired form and $\left\|x-x_{m}^{\prime}\right\| \leq\left\|x-x_{m}\right\|+\left\|x_{m}-x_{m}^{\prime}\right\|<\varepsilon$. b) It is easy that $\|T\|=1, \sigma_{p}(T)=\emptyset$. If $|\lambda|<1$, then $\Lambda_{y}(\lambda I-T)=0$, where $y=\left(1, \lambda, \lambda^{2}, \ldots\right) \in \ell_{2}$. It follows that $\operatorname{ran}(\lambda I-T)$ is not dense, so $\lambda \in \sigma_{r}(T)$. If $|\lambda|=1$, then $\operatorname{ran}(\lambda I-T)$ is dense (the proof is basically the same as for $\lambda=1$). It means that $\lambda \notin \sigma_{r}(T)$. Consequently, $\sigma_{r}(T)$ is the open unit disc, while $\sigma(T)$ is the closed unit disc.
11. Pick an arbitrary $f \in C[0,1]$ with $\|f\| \leq 1$. Then $f(x) \leq 1$ for all $x \in[0,1]$. It follows that $(T f)(x) \leq x$, $\left(T^{2} f\right)(x) \leq x^{2} / 2,\left(T^{3} f\right)(x) \leq x^{3} / 6$, and so on. One can show by induction that $\left(T^{k} f\right)(x) \leq x^{k} / k!$. Similarly, since $f(x) \geq-1$ for all x, we obtain that $\left(T^{k} f\right)(x) \geq-x^{k} / k$!. It follows that $\left\|T^{k} f\right\| \leq 1 / k$! for any f with $\|f\| \leq 1$. It means that the operator norm of T^{k} is at most $1 / k!$. In fact, the constant 1 function shows that $\left\|T^{k}\right\|=1 / k!$. Thus $\|T\|=1$ and

$$
r(T)=\inf _{k} \sqrt[k]{\left\|T^{k}\right\|}=\inf _{k} \frac{1}{\sqrt[k]{k!}}=0
$$

The kernel of T is trivial (i.e., ker $T=\{0\}$), since $T f=0$ implies that $f=0$ (note that $T f$ is differentiable and its derivative is f). So T is injective. It is clearly not surjective, since $T f$ is always 0 at 0 . Thus $0 \in \sigma(T)$. The spectrum has no other point, because it is contained by $\{\lambda:|\lambda| \leq r(T)\}=\{0\}$. So $\sigma(T)=\{0\}$. Finally, we show that the range is not closed. It is not hard to see that $\operatorname{ran} T$ is the set of continuously differentiable functions g with $g(0)=0$. A sequence of such functions can clearly converge (in the supremum norm) to a non-differentiable function.
12. We proved earlier that $\left\|S_{1} S_{2}\right\| \leq\left\|S_{1}\right\| \cdot\left\|S_{2}\right\|$, where $S_{1} S_{2}$ is the composition of S_{1} and S_{2}. Since T^{m+n} is the composition of T^{m} and T^{n} :

$$
\left\|T^{m+n}\right\|=\left\|T^{m} T^{n}\right\| \leq\left\|T^{m}\right\| \cdot\left\|T^{n}\right\|
$$

Taking logarithms of both sides: $a_{m+n} \leq a_{m}+a_{n}$. It remains to show that for any such sequence

$$
\lim _{k \rightarrow \infty} a_{k} / k=\inf _{k} a_{k} / k
$$

Clearly, $\liminf _{k \rightarrow \infty} a_{k} / k \geq \inf _{k} a_{k} / k$; it suffices to show that $\lim \sup _{k \rightarrow \infty} a_{k} / k \leq \inf _{k} a_{k} / k$. We need that for any fixed m we have $\lim \sup _{k \rightarrow \infty} a_{k} / k \leq a_{m} / m$. Any k can be written as $s m+r$ with $0 \leq r<m$. We know that $a_{k}=a_{s m+r} \leq a_{s m}+a_{r} \leq s \cdot a_{m}+a_{r}$. Thus

$$
\frac{a_{k}}{k} \leq \frac{s \cdot a_{m}}{k}+\frac{a_{r}}{k} \leq \frac{s \cdot a_{m}}{s m}+\frac{a_{r}}{k}=\frac{a_{m}}{m}+\frac{a_{r}}{k}
$$

The right-hand side tends to a_{m} / m as $k \rightarrow \infty$, we are done.
13. We use that

$$
T^{-1}-S^{-1}=S^{-1}(S-T) T^{-1}
$$

It follows that

$$
\left\|T^{-1}-S^{-1}\right\| \leq\left\|S^{-1}\right\|\|S-T\|\left\|T^{-1}\right\| \leq\left\|S^{-1}\right\| \frac{1}{2\left\|T^{-1}\right\|}\left\|T^{-1}\right\|=\frac{1}{2}\left\|S^{-1}\right\|
$$

which yields that

$$
\left\|T^{-1}\right\| \geq\left\|S^{-1}\right\|-\left\|T^{-1}-S^{-1}\right\| \geq\left\|S^{-1}\right\|-\frac{1}{2}\left\|S^{-1}\right\|=\frac{1}{2}\left\|S^{-1}\right\|
$$

14. Let S be the left shift operator on ℓ_{1}. We notice that $T=1+S+S^{2}$. Let $p(z)=1+z+z^{2}$. Using the spectral mapping theorem and the fact that the spectrum of S is the closed unit disk:

$$
\sigma(T)=\left\{1+z+z^{2}:\|z\| \leq 1\right\}
$$

To determine its intersection with the real axis, we need to determine the set of real numbers c for which the equation

$$
1+z+z^{2}=c \Leftrightarrow z^{2}+z+(1-c)=0
$$

has a solution with $|z| \leq 1$. Solving this quadratic equation:

$$
z=\frac{-1 \pm \sqrt{1-4(1-c)}}{2}=\frac{-1}{2} \pm \sqrt{c-\frac{3}{4}}
$$

It is easy to check that the exact condition of at least one root being in the closed unit disk is that $0 \leq c \leq 3$. So the intersection in question is $[0,3]$. (Note that we would get a different set if we took the intersection $\sigma(S) \cap \mathbb{R}=[-1,1]$ and then took the image of this set under p, which is $[3 / 4,3]$.)
15. It is clearly enough to show that $r(T S) \leq r(S T)$. The key observation is the following:

$$
(T S)^{k}=T S T S \cdots T S=T(S T S T \cdots S T) S=T(S T)^{k-1} S
$$

Then

$$
\left\|(T S)^{k}\right\| \leq\|T\|\left\|(S T)^{k-1}\right\|\|S\|
$$

Let $\varepsilon>0$; then for any large enough k we have

$$
\sqrt[k-1]{\left\|(S T)^{k-1}\right\|}<r(S T)+\varepsilon
$$

Consequently,

$$
\left\|(T S)^{k}\right\| \leq\|T\|\|S\|(r(S T)+\varepsilon)^{k-1}=\frac{\|T\|\|S\|}{r(S T)+\varepsilon}(r(S T)+\varepsilon)^{k}
$$

Taking k-th root, then taking the limit as $k \rightarrow \infty$ we get that $r(T S) \leq r(S T)+\varepsilon$. Since this holds for any $\varepsilon>0$, it follows that $r(T S) \leq r(S T)$.
16. Pick $q \in \mathbb{R}$ such that $r(T)<q<1$. We know that $\left\|T^{k}\right\|<q^{k}$ for large enough k. We set

$$
S_{k}=I+T+T^{2}+\cdots+T^{k-1}
$$

It is easy to see that S_{k} is a Cauchy sequence in $B(X)$. Since X is complete, so is $B(X)$, which yields that S_{k} is convergent. Let $S \in B(X)$ denote the the limit of S_{k}, that is, $\left\|S-S_{k}\right\| \rightarrow 0$. We need to show that $S(I-T)=(I-T) S=I$. Since

$$
S_{k}(I-T)=\left(I+T+\cdots+T^{k-1}\right)(I-T)=I-T^{k}
$$

we have

$$
\left\|S_{k}(I-T)-I\right\|=\left\|T^{k}\right\| \rightarrow 0 \text { as } k \rightarrow \infty
$$

Consequently,

$$
\begin{aligned}
& \|S(I-T)-I\|=\left\|S(I-T)-S_{k}(I-T)+S_{k}(I-T)-I\right\| \leq \\
& \quad\left\|\left(S-S_{k}\right)(I-T)\right\|+\left\|S_{k}(I-T)-I\right\| \leq\left\|S-S_{k}\right\|\|I-T\|+\left\|S_{k}(I-T)-I\right\| \rightarrow 0
\end{aligned}
$$

as $k \rightarrow \infty$. It follows that $S(I-T)=I$. Proving that $(I-T) S=I$ is similar.
17.* a) We know from previous exercises that if $r(S T)<1 \Leftrightarrow r(T S)<1$, then both $I-S T$ and $I-T S$ are invertible. However, this does not help us when $r(S T) \geq 1$.

Suppose that $I-S T$ is invertible, let $U \in B(X)$ be the inverse, that is, $U(I-S T)=(I-S T) U=I$. We need to find an inverse operator V for $I-T S$. To get an idea how to define V, we consider the case $r(S T)=r(T S)<1$. Then $U=I+S T+S T S T+\cdots$ and $V=I+T S+T S T S+\cdots$. Clearly, $V=I+T U S$. So we will define V with this formula in the general case. Then using $U(I-S T)=I$:

$$
\begin{aligned}
& V(I-T S)=(I+T U S)(I-T S)=I-T S+T U S-T U S T S= \\
& I+T(-I+U-U S T) S=I+S(U(I-S T)-I) T=I
\end{aligned}
$$

Proving that $(I-T S) V=I$ is similar.
b) Using the first part we get that for any $\lambda \neq 0$:
$\lambda \notin \sigma(S T) \Leftrightarrow \lambda I-S T$ invertible $\Leftrightarrow I-\frac{S}{\lambda} T$ invertible $\Leftrightarrow I-T \frac{S}{\lambda}$ invertible $\Leftrightarrow \lambda I-T S$ invertible $\Leftrightarrow \lambda \notin \sigma(S T)$.

