Functional Analysis, BSM, Spring 2012

Exercise sheet: Compact operators

Solutions

1. Let $\varepsilon=c / 2$. Then any open ball of radius ε can clearly contain at most one x_{n}. Thus we need infinitely many open balls of radius ε to cover the sequence $\left(x_{n}\right)$. It follows that X has no finite ε-lattice, so X is not totally bounded.

For the converse, suppose that X is not totally bounded. It means that there exists $\varepsilon>0$ for which X has no finite ε-lattice. Pick an arbitrary $x_{1} \in X$. Then $B_{\varepsilon}\left(x_{1}\right) \neq X$, otherwise $\left\{x_{1}\right\}$ would be a finite ε-lattice. So we can pick $x_{2} \in X \backslash B_{\varepsilon}\left(x_{1}\right)$. Then $B_{\varepsilon}\left(x_{1}\right) \cup B_{\varepsilon}\left(x_{2}\right) \neq X$, otherwise $\left\{x_{1}, x_{2}\right\}$ would be a finite ε-lattice. So we can pick $x_{3} \in X \backslash B_{\varepsilon}\left(x_{1}\right) \backslash B_{\varepsilon}\left(x_{2}\right)$. If we keep doing this, we get an infinite sequence x_{1}, x_{2}, \ldots such that $d\left(x_{n}, x_{m}\right) \geq \varepsilon$ for $n \neq m$.
2. a-b) The vectors $x_{n}=(0,0, \ldots, 0,1 / 2,0,0, \ldots)$ are in the unit ball of both ℓ_{∞} and ℓ_{1}. If $n \neq m$, then

$$
\left\|x_{n}-x_{m}\right\|_{\infty}=1 / 2 \text { and }\left\|x_{n}-x_{m}\right\|_{1}=1
$$

By Exercise 1 it follows that the unit balls are not totally bounded.
c) We claim that for any $\varepsilon>0$ there exist $x_{1}, x_{2}, \ldots \in X$ such that $\left\|x_{n}\right\|=1$ for all n and $\left\|x_{n}-x_{m}\right\|>1-\varepsilon$ if $n \neq m$. We construct such a sequence recursively. If we already have x_{1}, \ldots, x_{k}, then consider the linear subspace spanned by these vectors. It is a closed proper subspace (because it is finite dimensional), so by Riesz-lemma there exists x_{k+1} with $\left\|x_{k+1}\right\|=1$ such that the distance of x_{k+1} from this closed subspace is more than $1-\varepsilon$. In particular, for any $i=1, \ldots, k$ we have $\left\|x_{k+1}-x_{i}\right\|>1-\varepsilon$.
3. The image of the open unit ball is the following set:

$$
\left\{\left(\beta_{1}, \beta_{2}, \ldots\right):\left|\beta_{n}\right|<\frac{1}{n}\right\} .
$$

We need to show that this set is totally bounded. Fix a positive integer N and consider sequences $\left(\beta_{1}, \beta_{2}, \ldots\right)$ with the following properties:

- if $j>N$, then $\beta_{j}=0$;
- if $j \leq N$, then $\beta_{j}=a_{j} / N+i b_{j} / N$, where a_{j}, b_{j} are integers between $-N$ and N.

There are finitely many such sequences and the $2 / N$-balls around these sequences cover $T\left(B_{1}(0)\right)$.
The point spectrum $\sigma_{p}(T)$ is clearly $\{1,1 / 2,1 / 3,1 / 4, \ldots\}$. Since the image of a bounded sequence $\left(\alpha_{1}, \alpha_{2}, \ldots\right)$ is a sequence converging to 0 , we have $\operatorname{ran} T \subset c_{0}$. Since c_{0} is closed, it follows that $\mathrm{cl}(\operatorname{ran} T) \subset c_{0}$, which means that $\operatorname{ran} T$ is not dense. So $0 \in \sigma_{r}(T) \subset \sigma(T)$. For a compact operator the spectrum is the same as the point spectrum except maybe the point 0 , so we get that $\sigma(T)=\{0,1,1 / 2,1 / 3,1 / 4, \ldots\}$ and $\sigma_{r}(T)=\{0\}$.
4. Similar arguments show that they are also compact.
5. a) We need to show that for any positive ε the image $T\left(B_{1}(0)\right)$ has a finite ε-lattice. There exists N such that $\left\|T_{N}-T\right\|<\varepsilon / 2$. Since T_{N} is compact, $T_{N}\left(B_{1}(0)\right)$ has a finite $\varepsilon / 2$-lattice: $y_{1}, \ldots, y_{m} \in Y$ such that

$$
T_{N}\left(B_{1}(0)\right) \subset \bigcup_{i=1}^{m} B_{\varepsilon / 2}\left(y_{i}\right)
$$

We claim that $\left\{y_{1}, \ldots, y_{m}\right\}$ is an ε-lattice for $T\left(B_{1}(0)\right)$. Pick an arbitrary $x \in B_{1}(0)$. There exists $1 \leq i \leq m$ for which $T_{N} x \in B_{\varepsilon / 2}\left(y_{i}\right)$. Since $\left\|T_{N} x-T x\right\| \leq\left\|T_{N}-T\right\|\|x\|<\varepsilon / 2$, it follows that $T x \in B_{\varepsilon}\left(y_{i}\right)$.
b) The image of the unit ball is contained by the ball in $\operatorname{ran} T$ of radius $\|T\|$. If $\operatorname{ran} T$ is finite dimensional, then this ball is totally bounded.
c) Consider the operators

$$
T_{n}:\left(\alpha_{1}, \alpha_{2}, \ldots\right) \mapsto\left(\alpha_{1}, \frac{\alpha_{2}}{2}, \ldots, \frac{\alpha_{n}}{n}, 0,0, \ldots\right)
$$

They clearly have finite rank and $\left\|T-T_{n}\right\|=1 /(n+1)$. Using part a) and b) we conclude that T is compact. 6. For any $\varepsilon>0$ we construct a finite ε-lattice of $T\left(B_{1}(0)\right)$. It suffices to do that when $\varepsilon=1 / N$ for some positive integer N. Consider integer sequences $a_{0}, a_{1}, \ldots, a_{N}$ with the following property: $a_{0}=0$ and a_{k+1} is equal to $a_{k}-1, a_{k}$ or $a_{k}+1$. There are finitely many sequences with this property. For any such sequence we consider the following function f : let $f(k \varepsilon)=a_{k} \varepsilon$ and let f be linear on each interval $[k \varepsilon,(k+1) \varepsilon]$. It is not hard to see that these functions form a finite ε-lattice for $T\left(B_{1}(0)\right)$.
7.* We claim that the functions in $T\left(B_{1}(0)\right)$ are uniformly equicontinuous, that is, for any $\varepsilon>0$ there exists $\delta>0$ such that for any $g \in T\left(B_{1}(0)\right)$ and any $x_{1}, x_{2} \in[0,1]$ with $\left|x_{1}-x_{2}\right|<\delta$ we have $\left|g\left(x_{1}\right)-g\left(x_{2}\right)\right|<\varepsilon$. Since $[0,1] \times[0,1]$ is compact, the kernel function k is uniformly continuous. We will only need the weaker property that for any $\varepsilon>0$ there exists $\delta>0$ such that $\left|k\left(x_{1}, y\right)-k\left(x_{2}, y\right)\right|<\varepsilon$ if $\left|x_{1}-x_{2}\right|<\delta$. It follows that for any $f \in B_{1}(0)$ and $x_{1}, x_{2} \in[0,1]$ with $\left|x_{1}-x_{2}\right|<\delta$:

$$
\left|T f\left(x_{1}\right)-T f\left(x_{2}\right)\right|=\left|\int_{0}^{1}\left(k\left(x_{1}, y\right)-k\left(x_{2}, y\right)\right) f(y) \mathrm{d} y\right| \leq \int_{0}^{1}\left|k\left(x_{1}, y\right)-k\left(x_{2}, y\right)\right||f(y)| \mathrm{d} y \leq \varepsilon
$$

We will also need that the functions in $T\left(B_{1}(0)\right)$ are uniformly bounded. This is easy: k is continuous function on a compact set, so $|k(x, y)|$ has a maximum C. Then for any $f \in B_{1}(0)$ we have $|T f(x)| \leq C$ for all x.

Using uniform equicontinuity and uniform boundedness one can construct a finite ε-lattice as in the solution of the previous exercise.
8. a) First suppose that S is compact. Since T is bounded,

$$
S T\left(B_{1}^{X}(0)\right) \subset S\left(B_{\|T\|}^{Y}(0)\right)=\|T\| \cdot S\left(B_{1}^{Y}(0)\right)
$$

which is totally bounded, because S is compact.
Now we suppose that T is compact. It means that for any $\varepsilon>0$ there exists a finite ε-lattice of $T\left(B_{1}(0)\right)$: $\left\{y_{1}, \ldots, y_{m}\right\} \subset Y$. It is easy to see that $\left\{S y_{1}, \ldots, S y_{m}\right\} \subset Z$ is an $\|S\| \varepsilon$-lattice for $S T\left(B_{1}(0)\right)$. This implies that $S T\left(B_{1}(0)\right)$ is totally bounded, $S T$ is compact.
b) Let $X=\ell_{\infty}$ and let

$$
T:\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \ldots\right) \mapsto\left(0, \alpha_{1}, 0, \alpha_{3}, 0, \alpha_{5}, \ldots\right)
$$

Since the image of the unit ball contains the unit ball of an infinite dimensional subspace, T cannot be compact. However, it is easy to see that $T^{2}=0$, so T^{2} is compact.
9. Assume that T is surjective. Then by the open mapping theorem T is open. It means that $T\left(B_{1}(0)\right)$ is an open set. In particular, it contains an open ball around 0 . Since X is infinite dimensional, such a ball is not totally bounded, contradiction.

We have $0 \in \sigma_{p}(T)$ for $T:\left(\alpha_{1}, \alpha_{2}, \ldots\right) \mapsto\left(\alpha_{1}, 0,0, \ldots\right)$.
Let

$$
T:\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right) \mapsto\left(\alpha_{1}, \frac{\alpha_{2}}{2}, \frac{\alpha_{3}}{3}, \frac{\alpha_{4}}{4}, \ldots\right)
$$

as in Exercise 3. If we consider T as an $\ell_{\infty} \rightarrow \ell_{\infty}$ operator, then $0 \in \sigma_{r}(T)$. If we consider it as an $\ell_{1} \rightarrow \ell_{1}$ operator, then $0 \in \sigma_{c}(T)$.
10. Assume that T is bounded below, that is, there exists $c>0$ such that $\|T x\| \geq c\|x\|$ for any $x \in X$. It follows that $B_{c}^{Y}(0) \cap \operatorname{ran} T$ is contained by $T\left(B_{1}(0)\right.$). (For any $y \in \operatorname{ran} T$ there is $x \in X$ for which $T x=y$. If $\|y\|<c$, then $\|x\| \leq\|T x\| / c=\|y\| / c<1$.) If T has infinite rank (i.e., $\operatorname{ran} T$ is infinite dimensional), then $B_{c}^{Y}(0) \cap \operatorname{ran} T$ is not totally bounded by part c) of Exercise 2. Since $B_{c}^{Y}(0) \cap \operatorname{ran} T \subset T\left(B_{1}(0)\right)$, this contradicts the compactness of T.
11. We claim that T is compact if and only if τ is a constant function. If τ is constant, then so is every function $f \circ \tau$, which means that $\operatorname{ran} T$ is one-dimensional, so T is indeed compact.

Now suppose that τ is not constant. It follows that there are disjoint closed intervals $I_{1}, I_{2}, \ldots \subset[0,1]$ such that their images $J_{n}=\tau\left(I_{n}\right)$ are pairwise disjoint. There clearly exist functions $f_{n} \in C[0,1]$ with the following properties:

- $0 \leq f_{n}(x) \leq 1$ for all $x \in[0,1] ;$
- f_{n} vanishes outside J_{n};
- there exists $x_{n} \in J_{n}$ for which $f_{n}\left(x_{n}\right)=1$.

On the one hand, each f_{n} is in the closed unit ball of $C[0,1]$. On the other hand, if $n \neq m$, then the distance of $T f_{n}$ and $T f_{m}$ is 1 . It follows that $T\left(\bar{B}_{1}(0)\right)$ is not totally bounded, T is not compact.

