Functional Analysis, BSM, Spring 2012

Exercise sheet: L_p spaces

- **1.** Let $f, g \in \mathcal{L}_{\infty}(\mu)$. Show that $||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$.
- **2. W8P1.** (5 points) Let $f \in \mathcal{L}_{\infty}(\mu)$. Show that

$$||f||_{\infty} = \min \left\{ C \in \mathbb{R} : |f(x)| \le C \text{ for } \mu \text{-almost all } x \in X \right\}.$$

3. Prove that the space $(L_{\infty}(\mathbb{R}), \|\cdot\|_{\infty})$ is complete.

4. Show that there is a nonzero bounded linear functional Λ on $L_{\infty}(\mathbb{R})$ such that $\Lambda f = 0$ for any continuous function f.

5. W8P2. (10 points) We say that a Banach space X is uniformly convex if for any $\varepsilon > 0$ there exists $\delta > 0$ such that

$$||x|| = ||y|| = 1$$
 and $\left\|\frac{x+y}{2}\right\| > 1 - \delta$ imply $||x-y|| < \varepsilon$.

(It can be proved that every uniformly convex Banach space is reflexive.)

a) Show that $L_1(\mathbb{R})$ is not uniformly convex.

b) Show that $L_{\infty}(\mathbb{R})$ is not uniformly convex.

c) Show that $L_2(\mathbb{R})$ is uniformly convex.

6.* Prove that C[0,1] is dense in $L_1[0,1]$.

Solutions can be found on: www.renyi.hu/~harangi/bsm/