
Functional Analysis, BSM, Spring 2012

Exercise sheet: Lp spaces

Solutions

1. Suppose that |f | ≤ C1 µ-almost everywhere and |g| ≤ C2 µ-almost everywhere. It means that the exceptional

sets

{x ∈ X : |f(x)| > C1} and {x ∈ X : |g(x)| > C2}

have measure zero. So their union

E = {x ∈ X : |f(x)| > C1} ∪ {x ∈ X : |g(x)| > C2}

also has measure zero. However, for any x /∈ E we have |(f + g)(x)| ≤ |f(x)| + |g(x)| ≤ C1 + C2. Thus
|f + g| ≤ C1 + C2 holds µ-almost everywhere and the statement easily follows

2. We need to prove that |f | ≤ ‖f‖∞ µ-almost everywhere. Let Cn = ‖f‖∞ + 1/n. We know that |f | ≤ Cn

holds µ-almost everywhere. It means that the exceptional set

En = {x ∈ X : |f(x)| > Cn}

has measure zero. Then the countable union

E =
∞⋃

n=1

En

also has measure zero. If x /∈ E, then |f(x)| ≤ Cn for all n, thus |f(x)| ≤ ‖f‖∞ as claimed.

3. We prove the statement for any space L2(µ). We need to show that every Cauchy sequence (fn) in L2(µ)
is convergent. Let

En,m = {x ∈ X : |fn(x)− fm(x)| > ‖fn − fm‖∞} .

By the previous exercise µ(En,m) = 0. Hence

E =
⋃
n,m

En,m

also has measure zero. For any x /∈ E we have that fn(x) is a Cauchy sequence. Since C is complete, it follows
that fn(x) converges to some f(x). For x ∈ E we de�ne f(x) arbitrarily. It su�ces to show that ‖fn−f‖∞ → 0
as n→∞. Since (fn) is Cauchy, for any positive ε there exists N such that ‖fn − fm‖∞ < ε if m,n > N . For
x /∈ E it follows that |fn(x) − fm(x)| < ε if m,n > N . Now let us �x n > N and let m go to in�nity; we get
that |fn(x)− f(x)| ≤ ε. Since this is true for any x /∈ E, we obtain ‖fn − f‖∞ ≤ ε if n > N .

4. Let X = L∞(R), let Y ≤ X be the space of continuous functions and g ∈ X be (the equivalence class of)
the function

g(x) =

{
1, if x ≥ 0
0, if x < 0.

Let Y1 be the subspace spanned by Y and g. For a continuous function f ∈ Y and a scalar α we set
Λ(f + αg) = α. We claim that Λ is a bounded linear functional on Y1. Since

α = lim
x→0+

(f + αg)(x)− lim
x→0−

(f + αg)(x),

we get that
|Λ(f + αg)| = |α| ≤ 2‖f + αg‖∞.

Thus ‖Λ‖ ≤ 2. By the Hahn-Banach theorem Λ can be extended to a bounded linear functional on X.
Second solution: Since the uniform limit of continuous functions is continuous, we have that Y is a closed
subspace of X. It is clearly a proper subspace, too. By Extra problem 3a it follows that there exists a nonzero
linear functional vanishing on Y .



5. a,b) It su�ces to show that there exist distinct vectors x 6= y such that

‖x‖ = ‖y‖ =
∥∥∥∥x+ y

2

∥∥∥∥ = 1.

For L1(R) consider the functions

f1(t) =

{
1, if 0 ≤ t ≤ 1
0, otherwise

and f2(t) =

{
1, if 2 ≤ t ≤ 3
0, otherwise.

Clearly, ‖f1‖1 = ‖f2‖1 = ‖(f1 + f2)/2‖1 = 1.
For L∞(R) let

g1(t) =

{
1, if 0 ≤ t ≤ 1
0, otherwise

and g2(t) =

{
1, if − 1 ≤ t ≤ 1
0, otherwise.

Then ‖g1‖∞ = ‖g2‖∞ = ‖(g1 + g2)/2‖∞ = 1.
c) We show that every Hilbert space H is uniformly convex. The parallelogram law yields that

‖x− y‖2 = 2‖x‖2 + 2‖y‖2 − 4
∥∥∥∥x+ y

2

∥∥∥∥2

< 2 + 2− 4(1− δ) = 4δ.

We get the desired inequality by setting δ = ε/4.
6.* Sketch of the proof: we need to show that any function f ∈ L1[0, 1] can be approximated arbitrarily closely
(in the L1-distance) by continuous functions.

• The characteristic function χ(a,b) of an open interval (a, b) can clearly be approximated. So is the
characteristic function of the �nite union of open intervals.

• An open set U is the disjoint union of countably many open intervals. Thus χU can be approximated,
too.

• Using the regularity of the Lebesgue measure it follows that χB can also be approximated for any Borel
set B.

• It follows that step functions can also be approximated, which easily implies the general case.


