Functional Analysis, BSM, Spring 2012 Exercise sheet: L_p spaces Solutions

1. Suppose that $|f| \leq C_1 \mu$ -almost everywhere and $|g| \leq C_2 \mu$ -almost everywhere. It means that the *exceptional* sets

$$\{x \in X : |f(x)| > C_1\}$$
 and $\{x \in X : |g(x)| > C_2\}$

have measure zero. So their union

$$E = \{x \in X : |f(x)| > C_1\} \cup \{x \in X : |g(x)| > C_2\}$$

also has measure zero. However, for any $x \notin E$ we have $|(f+g)(x)| \leq |f(x)| + |g(x)| \leq C_1 + C_2$. Thus $|f+g| \leq C_1 + C_2$ holds μ -almost everywhere and the statement easily follows

2. We need to prove that $|f| \leq ||f||_{\infty} \mu$ -almost everywhere. Let $C_n = ||f||_{\infty} + 1/n$. We know that $|f| \leq C_n$ holds μ -almost everywhere. It means that the exceptional set

$$E_n = \{ x \in X : |f(x)| > C_n \}$$

has measure zero. Then the countable union

$$E = \bigcup_{n=1}^{\infty} E_n$$

also has measure zero. If $x \notin E$, then $|f(x)| \leq C_n$ for all n, thus $|f(x)| \leq ||f||_{\infty}$ as claimed.

3. We prove the statement for any space $L_2(\mu)$. We need to show that every Cauchy sequence (f_n) in $L_2(\mu)$ is convergent. Let

$$E_{n,m} = \{x \in X : |f_n(x) - f_m(x)| > ||f_n - f_m||_{\infty}\}$$

By the previous exercise $\mu(E_{n,m}) = 0$. Hence

$$E = \bigcup_{n,m} E_{n,m}$$

also has measure zero. For any $x \notin E$ we have that $f_n(x)$ is a Cauchy sequence. Since \mathbb{C} is complete, it follows that $f_n(x)$ converges to some f(x). For $x \in E$ we define f(x) arbitrarily. It suffices to show that $||f_n - f||_{\infty} \to 0$ as $n \to \infty$. Since (f_n) is Cauchy, for any positive ε there exists N such that $||f_n - f_m||_{\infty} < \varepsilon$ if m, n > N. For $x \notin E$ it follows that $||f_n(x) - f_m(x)| < \varepsilon$ if m, n > N. Now let us fix n > N and let m go to infinity; we get that $||f_n(x) - f(x)| \le \varepsilon$. Since this is true for any $x \notin E$, we obtain $||f_n - f||_{\infty} \le \varepsilon$ if n > N.

4. Let $X = L_{\infty}(\mathbb{R})$, let $Y \leq X$ be the space of continuous functions and $g \in X$ be (the equivalence class of) the function

$$g(x) = \begin{cases} 1, & \text{if } x \ge 0\\ 0, & \text{if } x < 0. \end{cases}$$

Let Y_1 be the subspace spanned by Y and g. For a continuous function $f \in Y$ and a scalar α we set $\Lambda(f + \alpha g) = \alpha$. We claim that Λ is a bounded linear functional on Y_1 . Since

$$\alpha = \lim_{x \to 0+} (f + \alpha g)(x) - \lim_{x \to 0-} (f + \alpha g)(x),$$

we get that

$$|\Lambda(f + \alpha g)| = |\alpha| \le 2||f + \alpha g||_{\infty}.$$

Thus $\|\Lambda\| \leq 2$. By the Hahn-Banach theorem Λ can be extended to a bounded linear functional on X. Second solution: Since the uniform limit of continuous functions is continuous, we have that Y is a closed subspace of X. It is clearly a proper subspace, too. By Extra problem 3a it follows that there exists a nonzero linear functional vanishing on Y. **5.** a,b) It suffices to show that there exist distinct vectors $x \neq y$ such that

$$||x|| = ||y|| = \left|\left|\frac{x+y}{2}\right|\right| = 1.$$

For $L_1(\mathbb{R})$ consider the functions

$$f_1(t) = \begin{cases} 1, & \text{if } 0 \le t \le 1\\ 0, & \text{otherwise} \end{cases} \text{ and } f_2(t) = \begin{cases} 1, & \text{if } 2 \le t \le 3\\ 0, & \text{otherwise.} \end{cases}$$

Clearly, $||f_1||_1 = ||f_2||_1 = ||(f_1 + f_2)/2||_1 = 1.$ For $L_{\infty}(\mathbb{R})$ let

$$g_1(t) = \begin{cases} 1, & \text{if } 0 \le t \le 1\\ 0, & \text{otherwise} \end{cases} \text{ and } g_2(t) = \begin{cases} 1, & \text{if } -1 \le t \le 1\\ 0, & \text{otherwise.} \end{cases}$$

Then $||g_1||_{\infty} = ||g_2||_{\infty} = ||(g_1 + g_2)/2||_{\infty} = 1.$

c) We show that every Hilbert space H is uniformly convex. The parallelogram law yields that

$$||x - y||^{2} = 2||x||^{2} + 2||y||^{2} - 4\left\|\frac{x + y}{2}\right\|^{2} < 2 + 2 - 4(1 - \delta) = 4\delta.$$

We get the desired inequality by setting $\delta = \varepsilon/4$.

6.* Sketch of the proof: we need to show that any function $f \in L_1[0, 1]$ can be approximated arbitrarily closely (in the L_1 -distance) by continuous functions.

- The characteristic function $\chi_{(a,b)}$ of an open interval (a,b) can clearly be approximated. So is the characteristic function of the finite union of open intervals.
- An open set U is the disjoint union of countably many open intervals. Thus χ_U can be approximated, too.
- Using the regularity of the Lebesgue measure it follows that χ_B can also be approximated for any Borel set B.
- It follows that step functions can also be approximated, which easily implies the general case.