Functional Analysis, BSM, Spring 2012

Exercise sheet: Inner product spaces

Inner product space: a vector space H (over $K = \mathbb{R}$ or \mathbb{C}) equipped with an inner product $(\cdot, \cdot) \colon H \times H \to K$ satisfying

• $(x_1 + x_2, y) = (x_1, y) + (x_2, y)$ and $(\alpha x, y) = \alpha(x, y)$ for any scalar $\alpha \in K$ and vectors $x, x_1, x_2, y \in H$;

•
$$(y,x) = \overline{(x,y)};$$

• (x, x) > 0 for any $0 \neq x \in H$.

It follows that $(x, y_1 + y_2) = (x, y_1) + (x, y_2)$ and $(x, \alpha y) = \overline{\alpha}(x, y)$. **Induced norm:** $||x|| \stackrel{\text{def}}{=} \sqrt{(x, x)}$. We proved that this is a norm on H.

Cauchy inequality: $|(x,y)| \le ||x|| ||y||$.

Hilbert space: an inner product space is called Hilbert space if it is complete (as a normed space with the induced norm).

Orthogonality: x and y are orthogonal if (x, y) = 0. We write $x \perp y$.

The orthogonal complement of a set $M \subset H$ is defined as $M^{\perp} = \{x \in H : x \perp m \text{ for all } m \in M\}.$

Weak convergence: We say that (x_n) weakly converges to x $(x_n \xrightarrow{w} x$ in notation) if for any $y \in H$ we have $(x_n, y) \to (x, y)$.

1. Let *H* be an inner product space; suppose that $x_n \to x$ and $y_n \to y$. Show that $(x_n, y_n) \to (x, y)$.

2. a) Show that in an inner product space the *parallelogram law* is satisfied:

$$||x + y||^{2} + ||x - y||^{2} = 2||x||^{2} + 2||y||^{2}.$$

b) Prove the *polarisation formula*: for real spaces

$$(x,y) = \frac{1}{4} \left(\|x+y\|^2 - \|x-y\|^2 \right);$$

while for complex spaces

$$(x,y) = \frac{1}{4} \left(\|x+y\|^2 - \|x-y\|^2 + i\|x+iy\|^2 - i\|x-iy\|^2 \right).$$

(This means that the inner product can be recovered from the norm.)

3. W9P1. (5 points) For which $1 \le p \le \infty$ is the ℓ_p -norm induced by an inner product?

4. W9P2. (5 points) Let H be an inner product space; $x_n, x \in H$. Prove that the following two assertions are equivalent:

- $x_n \to x;$
- $||x_n|| \to ||x||$ and $x_n \xrightarrow{w} x$.

5.* Let $(X, \|\cdot\|)$ be a real normed space that satisfies the parallelogram law. Prove that the norm $\|\cdot\|$ is induced by an inner product. Prove the statement for complex normed spaces as well.

6. W9P3. (5 points) Let H be an inner product space. As a normed space H has a completion \widetilde{H} , which is a Banach space. Show that \widetilde{H} is a Hilbert space.

7. W9P4. (5 points) Let H be an inner product space and $M \subset H$ arbitrary subset.

- a) Show that M^{\perp} is a closed linear subspace of H.
- b) Show that $M^{\perp} = (\operatorname{cl}(\operatorname{span} M))^{\perp}$, where $\operatorname{span} M$ is the linear subspace spanned by M.
- c) Show that $M \subset (M^{\perp})^{\perp}$.

Solutions can be found on: www.renyi.hu/~harangi/bsm/