Functional Analysis, BSM, Spring 2012

Exercise sheet: Inner product spaces

Inner product space: a vector space H (over $K=\mathbb{R}$ or \mathbb{C}) equipped with an inner product $(\cdot, \cdot): H \times H \rightarrow K$ satisfying

- $\left(x_{1}+x_{2}, y\right)=\left(x_{1}, y\right)+\left(x_{2}, y\right)$ and $(\alpha x, y)=\alpha(x, y)$ for any scalar $\alpha \in K$ and vectors $x, x_{1}, x_{2}, y \in H$;
- $(y, x)=\overline{(x, y)}$;
- $(x, x)>0$ for any $0 \neq x \in H$.

It follows that $\left(x, y_{1}+y_{2}\right)=\left(x, y_{1}\right)+\left(x, y_{2}\right)$ and $(x, \alpha y)=\bar{\alpha}(x, y)$.
Induced norm: $\|x\| \stackrel{\text { def }}{=} \sqrt{(x, x)}$. We proved that this is a norm on H.
Cauchy inequality: $|(x, y)| \leq\|x\|\|y\|$.
Hilbert space: an inner product space is called Hilbert space if it is complete (as a normed space with the induced norm).
Orthogonality: x and y are orthogonal if $(x, y)=0$. We write $x \perp y$.
The orthogonal complement of a set $M \subset H$ is defined as $M^{\perp}=\{x \in H: x \perp m$ for all $m \in M\}$.
Weak convergence: We say that $\left(x_{n}\right)$ weakly converges to $x\left(x_{n} \xrightarrow{\mathrm{w}} x\right.$ in notation) if for any $y \in H$ we have $\left(x_{n}, y\right) \rightarrow(x, y)$.

1. Let H be an inner product space; suppose that $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$. Show that $\left(x_{n}, y_{n}\right) \rightarrow(x, y)$.
2. a) Show that in an inner product space the parallelogram law is satisfied:

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}
$$

b) Prove the polarisation formula: for real spaces

$$
(x, y)=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)
$$

while for complex spaces

$$
(x, y)=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}+i\|x+i y\|^{2}-i\|x-i y\|^{2}\right) .
$$

(This means that the inner product can be recovered from the norm.)
3. W9P1. (5 points) For which $1 \leq p \leq \infty$ is the ℓ_{p}-norm induced by an inner product?
4. W9P2. (5 points) Let H be an inner product space; $x_{n}, x \in H$. Prove that the following two assertions are equivalent:

- $x_{n} \rightarrow x ;$
- $\left\|x_{n}\right\| \rightarrow\|x\|$ and $x_{n} \xrightarrow{\mathrm{w}} x$.
5.* Let $(X,\|\cdot\|)$ be a real normed space that satisfies the parallelogram law. Prove that the norm $\|\cdot\|$ is induced by an inner product. Prove the statement for complex normed spaces as well.

6. W9P3. (5 points) Let H be an inner product space. As a normed space H has a completion \widetilde{H}, which is a Banach space. Show that \widetilde{H} is a Hilbert space.
7. W9P4. (5 points) Let H be an inner product space and $M \subset H$ arbitrary subset.
a) Show that M^{\perp} is a closed linear subspace of H.
b) Show that $M^{\perp}=(\mathrm{cl}(\operatorname{span} M))^{\perp}$, where span M is the linear subspace spanned by M.
c) Show that $M \subset\left(M^{\perp}\right)^{\perp}$.

Solutions can be found on: www.renyi.hu/~harangi/bsm/

