
Functional Analysis, BSM, Spring 2012

Exercise sheet: Inner product spaces

Solutions

1.

|(xn, yn)− (x, y)| = |(xn, yn)− (xn, y) + (xn, y)− (x, y)| ≤ |(xn, yn)− (xn, y)|+ |(xn, y)− (x, y)| =
|(xn, yn − y)|+ |(xn − x, y)| ≤ ‖xn‖‖yn − y‖+ ‖xn − x‖‖y‖ → 0.

(The last inequality follows from the Cauchy inequality.)

2. a) The parallelogram law is the sum of the following two equations:

‖x+ y‖2 = (x+ y, x+ y) = (x, x) + (x, y) + (y, x) + (y, y);

‖x− y‖2 = (x− y, x− y) = (x, x)− (x, y)− (y, x) + (y, y).

b) In real spaces we have (x, y) = (y, x), so the di�erence of the above equations gives the polarisation formula.
In a complex space (x, y) + (y, x) = (x, y) + (x, y) = 2<(x, y). Thus we get

<(x, y) =
1
4
(
‖x+ y‖2 − ‖x− y‖2

)
.

Now we use this formula for x and iy:

<(x, iy) =
1
4
(
‖x+ iy‖2 − ‖x− iy‖2

)
.

However,
<(x, iy) = < (−i(x, y)) = =(x, y), so

(x, y) = <(x, y) + i=(x, y) =
1
4
(
‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2

)
.

3. We have seen that the `2-norm is induced by the inner product

(x, y) =
∞∑

n=1

αnβn, where x = (α1, α2, . . .) and y = (β1, β2, . . .).

We show that all other `p-norms fail to satisfy the parallelogram law and thus cannot be induced by an inner
product. Let x = (1, 0, 0, . . .) and y = (0, 1, 0, . . .). It is easy to see that for 1 ≤ p <∞ we have

‖x‖p = ‖y‖p = 1 and ‖x+ y‖p = ‖x− y‖p = p
√

2,

while for p =∞
‖x‖∞ = ‖y‖∞ = ‖x+ y‖∞ = ‖x− y‖∞ = 1.

Consequently, the parallelogram law only holds for p = 2.
4. First suppose that xn → x, that is, ‖xn − x‖ → 0. On the one hand,

|‖xn‖ − ‖x‖| ≤ ‖xn − x‖ → 0.

On the other hand, the Cauchy inequality implies

|(xn − x, y)| ≤ ‖xn − x‖‖y‖ → 0

for any �xed y ∈ H, thus xn
w−→ x.

Now we assume that ‖xn‖ → ‖x‖ and xn
w−→ x. Then

‖xn − x‖2 = (xn − x, xn − x) = (xn, xn)− (xn, x)− (x, xn) + (x, x) = ‖xn‖2 − (xn, x)− (xn, x) + ‖x‖2,

which converges to

‖x‖2 − (x, x)− (x, x) + ‖x‖2 = ‖x‖2 − ‖x‖2 − ‖x‖2 + ‖x‖2 = 0.



5.* We prove the statement for real normed spaces. The complex case is similar. We de�ne the inner product
as the polarisation formula suggests:

(x, y) =
1
4
(
‖x+ y‖2 − ‖x− y‖2

)
.

We need to prove that it is indeed an inner product. (It is clear that it induces the original norm.) For any
x, y:

(x, y) =
1
4
(
‖x+ y‖2 − ‖x− y‖2

)
=

1
4
(
‖y + x‖2 − ‖y − x‖2

)
= (y, x).

For any x 6= 0:

(x, x) =
1
4
(
‖x+ x‖2 − ‖x− x‖2

)
=

1
4
‖2x‖2 > 0.

For any x1, x2, y:

(x1, y) + (x2, y) =
1
4
(
‖x1 + y‖2 − ‖x1 − y‖2

)
+

1
4
(
‖x2 + y‖2 − ‖x2 − y‖2

)
=

1
4

(∥∥∥∥x1 + x2

2
+
x1 − x2

2
+ y

∥∥∥∥2

−
∥∥∥∥x1 + x2

2
+
x1 − x2

2
− y
∥∥∥∥2

+
∥∥∥∥x1 + x2

2
− x1 − x2

2
+ y

∥∥∥∥2

−
∥∥∥∥x1 + x2

2
− x1 − x2

2
− y
∥∥∥∥2
)

=

1
4

(
2
∥∥∥∥x1 + x2

2
+ y

∥∥∥∥2

+ 2
∥∥∥∥x1 − x2

2

∥∥∥∥2

− 2
∥∥∥∥x1 + x2

2
− y
∥∥∥∥2

− 2
∥∥∥∥x1 − x2

2

∥∥∥∥2
)

=

1
4

(
2
∥∥∥∥x1 + x2

2
+ y

∥∥∥∥2

− 2
∥∥∥∥x1 + x2

2
− y
∥∥∥∥2
)

= 2
(
x1 + x2

2
, y

)
.

So we obtained that

(x1, y) + (x2, y) = 2
(
x1 + x2

2
, y

)
. (1)

Plugging x1 = x and x2 = 0 we get

(x, y) = 2
(x

2
, y
)
. (2)

First using (2) with x = x1 + x2 and then (1):

(x1 + x2, y) = 2
(
x1 + x2

2
, y

)
= (x1, y) + (x2, y).

The only property of an inner product that remains to verify is that (αx, y) = α(x, y). If α is a positive integer,
then one can prove this by induction using additivity:

((n+ 1)x, y) = (nx+ x, y) = (nx, y) + (x, y) = n(x, y) + (x, y) = (n+ 1)(x, y).

It follows that it is also true when α is a negative integer, because

0 = (0, y) = (nx+ (−n)x, y) = (nx, y) + ((−n)x, y) = n(x, y) + ((−n)x, y) .

Then for α = 1/n:

(x, y) =
(
n

(
1
n
x

)
, y

)
= n

(
1
n
x, y

)
, so

(
1
n
x, y

)
=

1
n

(x, y).

For arbitrary rational number α = m/n:(m
n
x, y
)

=
(
m

1
n
x, y

)
= m

(
1
n
x, y

)
=
m

n
(x, y).

Finally, for an arbitrary real number α let us pick a sequence of rational numbers αn converging to α. Obviously,
αn(x, y)→ α(x, y). On the other hand, αn(x, y) = (αnx, y)→ (αx, y). (This follows from the continuity of our
inner product, which in turn follows from its de�nition and the fact that the norm is continuous.) The limits
must be equal, so (αx, y) = α(x, y). We are done.



6. We know that the induced norm ‖ · ‖ on H satis�es the parallelogram law. We claim that the norm ‖ · ‖∼
on the completion H̃ also satis�es the parallelogram law. (Then by the previous exercise it follows that ‖ · ‖∼
is induced by an inner product, thus H̃ is a Hilbert space.) Let x, y ∈ H̃ be arbitary vectors in the completion.

Since H is dense in H̃, there exist vectors xn, yn ∈ H such that xn → x and yn → y. We know that

‖xn + yn‖2 + ‖xn − yn‖2 = 2‖xn‖2 + 2‖yn‖2,

which clearly converges to
‖x+ y‖2∼ + ‖x− y‖2∼ = 2‖x‖2∼ + 2‖y‖2∼.

7. a) If x, y ∈M⊥, then for any m ∈M

(x+ y,m) = (x,m) + (y,m) = 0 + 0 = 0,

thus x+ y ∈M⊥. If α is an arbitrary scalar, then

(αx,m) = α(x,m) = α · 0 = 0

for all m ∈M , so αx ∈M⊥, too. Hence M⊥ is a linear subspace. To see that it is closed, let us suppose that
xn ∈ M⊥ for all n and xn → x. Then (xn,m) = 0 for all m ∈ M and n ∈ N. Since (xn,m) → (x,m) by
Exercise 1, it follows that (x,m) = 0 for all m ∈M , thus x ∈M⊥.
b) It is clear from the de�nition that if A ⊂ B, then A⊥ ⊃ B⊥. Consequently,

M⊥ ⊃ (cl(spanM))⊥ .

Now let x ∈ M⊥ be arbitrary. Then {x}⊥ ⊃ M . However, {x}⊥ is a closed linear subspace by part a). It
follows that {x}⊥ ⊃ cl(spanM), which means that

x ∈ (cl(spanM))⊥ .

This proves that
M⊥ ⊂ (cl(spanM))⊥ .

c) Let m ∈ M be arbitrary. By de�nition, m is perpendicular to each vector x ∈ M⊥. Consequently,

m ∈
(
M⊥

)⊥
and we are done.


