Functional Analysis, BSM, Spring 2012
Exercise sheet: Inner product spaces
Solutions

(@, yn) = (@, 9)] = [(Tn, Yn) — (@0, ¥) + (@0, y) — (@,9)| < [(@nsyn) — (@0, Y|+ (@0, y) — (2,9)| =
[(@n, Yn = Y)| + [(@n — 2, 9)| < llznlllyn =yl + [lon — 2[|[lyll — 0.

(The last inequality follows from the Cauchy inequality.)

2. a) The parallelogram law is the sum of the following two equations:
|z +yl? = (z +y,2+y) = (z,2) + (2,9) + (y,2) + (4,);
o —yl* = (z —y, 2 —y) = (z,2) — (z,9) — (y,2) + (y,)-

b) In real spaces we have (x,y) = (y, x), so the difference of the above equations gives the polarisation formula.
In a complex space (z,y) + (v, ) (z,y) + (z,y) = 2R(x,y). Thus we get

<
Rey) = 3 (o4l — e — o).

Now we use this formula for x and 7y:

R(a,iy) = 7 (lz +ayl* = o —iyl*) .

e

However,

%(xwy) = %(—Z(l‘,y)) = S(z,y), so
. 1 . . . .
(@,y) = R(@,y) +iS(@,y) = 7 (le+yll* = |z = yl* +illz + iy —illz - iy[*) .
3. We have seen that the ¢5-norm is induced by the inner product

(z,y) = Zanﬂim where z = (ay, ag,...) and y = (61, B, - - .).

n=1

We show that all other £,-norms fail to satisfy the parallelogram law and thus cannot be induced by an inner
product. Let z = (1,0,0,...) and y = (0,1,0,...). It is easy to see that for 1 < p < oo we have

lzll, = lyll, =1 and ||z + yll, = [z — yll, = {/57

while for p = oo
[#lloc = 1Ylloc = [l + ylloc = [l = Ylloo = 1.

Consequently, the parallelogram law only holds for p = 2.
4. First suppose that z, — x, that is, ||z, — x| — 0. On the one hand,

llzall = lzll| < lzn — 2] — 0.
On the other hand, the Cauchy inequality implies
[(@n —2,y)| < llzn — 2|yl — 0

for any fixed y € H, thus z,, — x.
Now we assume that ||z, || — ||z|| and z,, —— 2. Then

lzn — x||2 (Tn — 2,2y — 2) = (Tn, Tn) — (Tn, @) — (T,20) + (z,2) = Hmn”2 — (@, x) = (Tn, @) + ||$H2v
which converges to

Ilz]* = (z,2) = (z,2) + [ll* = [l2|* = [|l=|* = [l2]]* + |z]|* = 0



5.* We prove the statement for real normed spaces. The complex case is similar. We define the inner product
as the polarisation formula suggests:

(z,9) = 7 (lz +yl* — llz — y[*) .

1
4
We need to prove that it is indeed an inner product. (It is clear that it induces the original norm.) For any
T,y

(ly +2l* = lly —«]?) = (v, 2).

(@,y) = 7 (le+yl* =l —yl*) =

=
] =

For any = # 0:
1
(lz+2]* = llz = 2[*) = 7]122]* > 0.

| =

(x,2) =

For any x1, 22, y:

1 1
(@1,9) + (@2,9) = 7 (ler +yll* = llzx = yl*) + 7 (2 +y[1” = llea = y)I*) =

1 T+ Xo 1 — T2 xr1 + o r1 — T2 2 xr1 + Zo 1 — T2 2 xr1 + T2 X1 — T2 2 o
4<2+2+yH > 2 H+2 y Y 2 2 Y )T
1 xr1 + o 2 r1 — T2 2 xr1 + X9 2 r1 — T2 2
-|2 2 -2 — -2 =
4( SR 2 2
1 T+ T 2 T+ T 2 T+ T
Y|k 2 _ol|® 2 _o (™ 2 .
4( 2 +yH 2 Y g Y
So we obtained that
1+ o
o)+ (a2 =2 (2520 0
Plugging z; = = and z2 = 0 we get
x

First using (2) with x = 21 + 5 and then (1):

A
($1+$2;y):2( 12 271/):(3317y)+(1’271/)-

The only property of an inner product that remains to verify is that (azx,y) = a(z,y). If a is a positive integer,
then one can prove this by induction using additivity:

((n+Dz,y) = (nz + 2,y) = (nz,y) + (z,y) = n(z,y) + (z,y) = (n+ 1)(z,y).

It follows that it is also true when « is a negative integer, because

0= (0,@/) = (nx + (_n)xvy) = (mc, y) + ((—n)x7y) = n(:c, y) + ((—n):my) .

Then for a = 1/n:
= (n(e) o) = (L) o0 (L) = L

For arbitrary rational number o = m/n:

(o) = (i) = (o) = Se

Finally, for an arbitrary real number « let us pick a sequence of rational numbers «a,, converging to . Obviously,
an(x,y) — a(x,y). On the other hand, a,(z,y) = (apz,y) — (az,y). (This follows from the continuity of our
inner product, which in turn follows from its definition and the fact that the norm is continuous.) The limits
must be equal, so (az,y) = a(z,y). We are done.



6. We know that the induced norm || - || on H satisfies the parallelogram law. We claim that the norm || - ||~
on the completion H also satisfies the parallelogram law. (Then by the previous exercise it follows that || - |~
is induced by an inner product, thus H is a Hilbert space.) Let x,y € H be arbitary vectors in the completion.
Since H is dense in fNI, there exist vectors z,,,y, € H such that z, — x and y,, — y. We know that

lzn +yall® + l2n =yl = 2llznall® + 2]lyall?,

which clearly converges to
2+ ylI2 + llz = yl|2 = 2[|=[2 + 2[ly|12.

7.a) If x,y € M, then for any m € M
(z +y,m) = (z,m) + (y,m) =0+0=0,
thus  +y € M*. If o is an arbitrary scalar, then
(ax,m) =alz,m)=a-0=0

for all m € M, so ax € ML, too. Hence M+ is a linear subspace. To see that it is closed, let us suppose that
r, € M+ for all n and z,, — 2. Then (z,,m) = 0 for all m € M and n € N. Since (x,,m) — (x,m) by
Exercise 1, it follows that (z,m) = 0 for all m € M, thus = € M*.

b) It is clear from the definition that if A C B, then A+ > B*. Consequently,

M* > (cl(span M))™" .

Now let z € M~ be arbitrary. Then {x}+ D M. However, {z}* is a closed linear subspace by part a). It
follows that {x}* D cl(span M), which means that

z € (cl(span M))* .

This proves that
M* C (cI(span M))" .
¢) Let m € M be arbitrary. By definition, m is perpendicular to each vector z € M*. Consequently,

m € (MJ-)J' and we are done.



