Functional Analysis, BSM, Spring 2012

Exercise sheet: Inner product spaces

Solutions

1.

$$
\begin{array}{r}
\left|\left(x_{n}, y_{n}\right)-(x, y)\right|=\left|\left(x_{n}, y_{n}\right)-\left(x_{n}, y\right)+\left(x_{n}, y\right)-(x, y)\right| \leq\left|\left(x_{n}, y_{n}\right)-\left(x_{n}, y\right)\right|+\left|\left(x_{n}, y\right)-(x, y)\right|= \\
\left|\left(x_{n}, y_{n}-y\right)\right|+\left|\left(x_{n}-x, y\right)\right| \leq\left\|x_{n}\right\|\left\|y_{n}-y\right\|+\left\|x_{n}-x\right\|\|y\| \rightarrow 0 .
\end{array}
$$

(The last inequality follows from the Cauchy inequality.)
2. a) The parallelogram law is the sum of the following two equations:

$$
\begin{aligned}
\|x+y\|^{2} & =(x+y, x+y)=(x, x)+(x, y)+(y, x)+(y, y) ; \\
\|x-y\|^{2} & =(x-y, x-y)=(x, x)-(x, y)-(y, x)+(y, y) .
\end{aligned}
$$

b) In real spaces we have $(x, y)=(y, x)$, so the difference of the above equations gives the polarisation formula.

In a complex space $(x, y)+(y, x)=(x, y)+\overline{(x, y)}=2 \Re(x, y)$. Thus we get

$$
\Re(x, y)=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right) .
$$

Now we use this formula for x and $i y$:

$$
\Re(x, i y)=\frac{1}{4}\left(\|x+i y\|^{2}-\|x-i y\|^{2}\right) .
$$

However,

$$
\begin{gathered}
\Re(x, i y)=\Re(-i(x, y))=\Im(x, y), \text { so } \\
(x, y)=\Re(x, y)+i \Im(x, y)=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}+i\|x+i y\|^{2}-i\|x-i y\|^{2}\right) .
\end{gathered}
$$

3. We have seen that the ℓ_{2}-norm is induced by the inner product

$$
(x, y)=\sum_{n=1}^{\infty} \alpha_{n} \overline{\beta_{n}}, \text { where } x=\left(\alpha_{1}, \alpha_{2}, \ldots\right) \text { and } y=\left(\beta_{1}, \beta_{2}, \ldots\right)
$$

We show that all other ℓ_{p}-norms fail to satisfy the parallelogram law and thus cannot be induced by an inner product. Let $x=(1,0,0, \ldots)$ and $y=(0,1,0, \ldots)$. It is easy to see that for $1 \leq p<\infty$ we have

$$
\|x\|_{p}=\|y\|_{p}=1 \text { and }\|x+y\|_{p}=\|x-y\|_{p}=\sqrt[p]{2}
$$

while for $p=\infty$

$$
\|x\|_{\infty}=\|y\|_{\infty}=\|x+y\|_{\infty}=\|x-y\|_{\infty}=1
$$

Consequently, the parallelogram law only holds for $p=2$.
4. First suppose that $x_{n} \rightarrow x$, that is, $\left\|x_{n}-x\right\| \rightarrow 0$. On the one hand,

$$
\left|\left\|x_{n}\right\|-\|x\|\right| \leq\left\|x_{n}-x\right\| \rightarrow 0 .
$$

On the other hand, the Cauchy inequality implies

$$
\left|\left(x_{n}-x, y\right)\right| \leq\left\|x_{n}-x\right\|\|y\| \rightarrow 0
$$

for any fixed $y \in H$, thus $x_{n} \xrightarrow{\mathbf{w}} x$.
Now we assume that $\left\|x_{n}\right\| \rightarrow\|x\|$ and $x_{n} \xrightarrow{\mathrm{w}} x$. Then

$$
\left\|x_{n}-x\right\|^{2}=\left(x_{n}-x, x_{n}-x\right)=\left(x_{n}, x_{n}\right)-\left(x_{n}, x\right)-\left(x, x_{n}\right)+(x, x)=\left\|x_{n}\right\|^{2}-\left(x_{n}, x\right)-\overline{\left(x_{n}, x\right)}+\|x\|^{2},
$$

which converges to

$$
\|x\|^{2}-(x, x)-\overline{(x, x)}+\|x\|^{2}=\|x\|^{2}-\|x\|^{2}-\|x\|^{2}+\|x\|^{2}=0 .
$$

5.* We prove the statement for real normed spaces. The complex case is similar. We define the inner product as the polarisation formula suggests:

$$
(x, y)=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right) .
$$

We need to prove that it is indeed an inner product. (It is clear that it induces the original norm.) For any x, y :

$$
(x, y)=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)=\frac{1}{4}\left(\|y+x\|^{2}-\|y-x\|^{2}\right)=(y, x)
$$

For any $x \neq 0$:

$$
(x, x)=\frac{1}{4}\left(\|x+x\|^{2}-\|x-x\|^{2}\right)=\frac{1}{4}\|2 x\|^{2}>0 .
$$

For any x_{1}, x_{2}, y :

$$
\begin{array}{r}
\left(x_{1}, y\right)+\left(x_{2}, y\right)=\frac{1}{4}\left(\left\|x_{1}+y\right\|^{2}-\left\|x_{1}-y\right\|^{2}\right)+\frac{1}{4}\left(\left\|x_{2}+y\right\|^{2}-\left\|x_{2}-y\right\|^{2}\right)= \\
\frac{1}{4}\left(\left\|\frac{x_{1}+x_{2}}{2}+\frac{x_{1}-x_{2}}{2}+y\right\|^{2}-\left\|\frac{x_{1}+x_{2}}{2}+\frac{x_{1}-x_{2}}{2}-y\right\|^{2}+\left\|\frac{x_{1}+x_{2}}{2}-\frac{x_{1}-x_{2}}{2}+y\right\|^{2}-\left\|\frac{x_{1}+x_{2}}{2}-\frac{x_{1}-x_{2}}{2}-y\right\|^{2}\right)= \\
\frac{1}{4}\left(2\left\|\frac{x_{1}+x_{2}}{2}+y\right\|^{2}+2\left\|\frac{x_{1}-x_{2}}{2}\right\|^{2}-2\left\|\frac{x_{1}+x_{2}}{2}-y\right\|^{2}-2\left\|\frac{x_{1}-x_{2}}{2}\right\|^{2}\right)= \\
\frac{1}{4}\left(2\left\|\frac{x_{1}+x_{2}}{2}+y\right\|^{2}-2\left\|\frac{x_{1}+x_{2}}{2}-y\right\|^{2}\right)=2\left(\frac{x_{1}+x_{2}}{2}, y\right)
\end{array}
$$

So we obtained that

$$
\begin{equation*}
\left(x_{1}, y\right)+\left(x_{2}, y\right)=2\left(\frac{x_{1}+x_{2}}{2}, y\right) \tag{1}
\end{equation*}
$$

Plugging $x_{1}=x$ and $x_{2}=0$ we get

$$
\begin{equation*}
(x, y)=2\left(\frac{x}{2}, y\right) \tag{2}
\end{equation*}
$$

First using (2) with $x=x_{1}+x_{2}$ and then (1):

$$
\left(x_{1}+x_{2}, y\right)=2\left(\frac{x_{1}+x_{2}}{2}, y\right)=\left(x_{1}, y\right)+\left(x_{2}, y\right)
$$

The only property of an inner product that remains to verify is that $(\alpha x, y)=\alpha(x, y)$. If α is a positive integer, then one can prove this by induction using additivity:

$$
((n+1) x, y)=(n x+x, y)=(n x, y)+(x, y)=n(x, y)+(x, y)=(n+1)(x, y)
$$

It follows that it is also true when α is a negative integer, because

$$
0=(0, y)=(n x+(-n) x, y)=(n x, y)+((-n) x, y)=n(x, y)+((-n) x, y) .
$$

Then for $\alpha=1 / n$:

$$
(x, y)=\left(n\left(\frac{1}{n} x\right), y\right)=n\left(\frac{1}{n} x, y\right), \text { so }\left(\frac{1}{n} x, y\right)=\frac{1}{n}(x, y)
$$

For arbitrary rational number $\alpha=m / n$:

$$
\left(\frac{m}{n} x, y\right)=\left(m \frac{1}{n} x, y\right)=m\left(\frac{1}{n} x, y\right)=\frac{m}{n}(x, y)
$$

Finally, for an arbitrary real number α let us pick a sequence of rational numbers α_{n} converging to α. Obviously, $\alpha_{n}(x, y) \rightarrow \alpha(x, y)$. On the other hand, $\alpha_{n}(x, y)=\left(\alpha_{n} x, y\right) \rightarrow(\alpha x, y)$. (This follows from the continuity of our inner product, which in turn follows from its definition and the fact that the norm is continuous.) The limits must be equal, so $(\alpha x, y)=\alpha(x, y)$. We are done.
6. We know that the induced norm $\|\cdot\|$ on H satisfies the parallelogram law. We claim that the norm $\|\cdot\|_{\sim}$ on the completion \widetilde{H} also satisfies the parallelogram law. (Then by the previous exercise it follows that $\|\cdot\|_{\sim}$ is induced by an inner product, thus \widetilde{H} is a Hilbert space.) Let $x, y \in \widetilde{H}$ be arbitary vectors in the completion. Since H is dense in \widetilde{H}, there exist vectors $x_{n}, y_{n} \in H$ such that $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$. We know that

$$
\left\|x_{n}+y_{n}\right\|^{2}+\left\|x_{n}-y_{n}\right\|^{2}=2\left\|x_{n}\right\|^{2}+2\left\|y_{n}\right\|^{2}
$$

which clearly converges to

$$
\|x+y\|_{\sim}^{2}+\|x-y\|_{\sim}^{2}=2\|x\|_{\sim}^{2}+2\|y\|_{\sim}^{2} .
$$

7. a) If $x, y \in M^{\perp}$, then for any $m \in M$

$$
(x+y, m)=(x, m)+(y, m)=0+0=0
$$

thus $x+y \in M^{\perp}$. If α is an arbitrary scalar, then

$$
(\alpha x, m)=\alpha(x, m)=\alpha \cdot 0=0
$$

for all $m \in M$, so $\alpha x \in M^{\perp}$, too. Hence M^{\perp} is a linear subspace. To see that it is closed, let us suppose that $x_{n} \in M^{\perp}$ for all n and $x_{n} \rightarrow x$. Then $\left(x_{n}, m\right)=0$ for all $m \in M$ and $n \in \mathbb{N}$. Since $\left(x_{n}, m\right) \rightarrow(x, m)$ by Exercise 1, it follows that $(x, m)=0$ for all $m \in M$, thus $x \in M^{\perp}$.
b) It is clear from the definition that if $A \subset B$, then $A^{\perp} \supset B^{\perp}$. Consequently,

$$
M^{\perp} \supset(\operatorname{cl}(\operatorname{span} M))^{\perp}
$$

Now let $x \in M^{\perp}$ be arbitrary. Then $\{x\}^{\perp} \supset M$. However, $\{x\}^{\perp}$ is a closed linear subspace by part a). It follows that $\{x\}^{\perp} \supset \operatorname{cl}(\operatorname{span} M)$, which means that

$$
x \in(\operatorname{cl}(\operatorname{span} M))^{\perp}
$$

This proves that

$$
M^{\perp} \subset(\operatorname{cl}(\operatorname{span} M))^{\perp}
$$

c) Let $m \in M$ be arbitrary. By definition, m is perpendicular to each vector $x \in M^{\perp}$. Consequently, $m \in\left(M^{\perp}\right)^{\perp}$ and we are done.

