Functional Analysis, BSM, Spring 2012

Exercise sheet: Hilbert spaces

Solutions

1. If $x \perp y$, then (x, y) = 0 and $(y, x) = \overline{(x, y)} = \overline{0} = 0$, so

$$\|x+y\|^2 = (x+y,x+y) = (x,x) + (x,y) + (y,x) + (y,y) = \|x\|^2 + \|y\|^2.$$

2. Let $X = \ell_{\infty}$,

$$Y = \{(\alpha, 0, 0, \ldots) : \alpha \in \mathbb{C}\} \le X$$

and $x_0 := (0, 1, 0, 0, ...)$. Clearly, $d(x_0, Y) = 1$ and for any $y = (\alpha, 0, 0, ...)$ with $|\alpha| \le 1$ we have $||x_0 - y|| = 1$. Other example:

$$X = \ell_1; Y = \{ (\alpha, \alpha, 0, \ldots) : \alpha \in \mathbb{C} \} \le X; x_0 = (1, -1, 0, 0, \ldots).$$

3. a) Let $x \in H$ be arbitrary. Since M is a closed linear subspace, by Riesz-lemma there exist $x_1 \in M$ and $x_2 \in M^{\perp}$ such that $x = x_1 + x_2$. Then

$$x \in (M^{\perp})^{\perp} \Leftrightarrow (x, y_2) = 0$$
 for all $y_2 \in M^{\perp} \Leftrightarrow (x_1 + x_2, y_2) = 0$ for all $y_2 \in M^{\perp}$

Since $x_1 \perp y_2$, this is equivalent with

$$(x_2, y_2) = 0$$
 for all $y_2 \in M^{\perp} \Leftrightarrow x_2 = 0 \Leftrightarrow x \in M$.

b) We have seen earlier that $M^{\perp} = (\operatorname{cl}(\operatorname{span} M))^{\perp}$. It follows that

$$(M^{\perp})^{\perp} = \left((\operatorname{cl}(\operatorname{span} M))^{\perp} \right)^{\perp} = \operatorname{cl}(\operatorname{span} M),$$

where in the last step we used part a) for the closed linear subspace cl(span M).

4. First suppose that Y is a closed subspace. Then Y is a Hilbert space itself, so the Riesz representation theorem tells us that $\Lambda = \Lambda_y$ for some $y \in Y$. Also, $\tilde{\Lambda} = \Lambda_z$ for some $z \in X$. We know that

$$||y|| = ||\Lambda_y|| = ||\Lambda|| = ||\widetilde{\Lambda}|| = ||\Lambda_z|| = ||z||$$
, thus $||y|| = ||z||$.

On the other hand, $\widetilde{\Lambda}$ is an extension of Λ , so they coincide on Y, which yields that

$$(u, y) = (u, z)$$
 for all $u \in Y$.

This means that (u, z - y) = 0 for all $u \in Y$, so $z - y \in Y^{\perp}$. In particular, $z - y \perp y$. Then we get $||z||^2 = ||y||^2 + ||z - y||^2$ by Pythagorean theorem. However, ||y|| = ||z||, so $||z - y||^2 = 0$, thus z must be equal to y, the extension is indeed unique.

If Y is not closed, then we first extend Λ to a bounded linear functional on clY. (Such an extension is unique, because Y is dense in clY and bounded linear functionals are continuous.) Then we can use the above argument for clY.

5. Let

$$y = \sum_{i=1}^{n} (x, e_i) e_i \in M.$$

Then for any $1 \leq j \leq n$:

$$(y, e_j) = \left(\sum_{i=1}^n (x, e_i)e_i, e_j\right) = \sum_{i=1}^n (x, e_i) \cdot (e_i, e_j) = (x, e_j).$$

It means that

$$(x - y, e_j) = (x, e_j) - (y, e_j) = 0.$$

So x - y is perpendicular to each e_j . Hence $x - y \in M^{\perp}$. (In other words, y is the orthogonal projection of x onto M.) Pythagorean theorem yields that y is the closest point of M to x: for any $m \in M$ we have $||x - y + m||^2 = ||x - y||^2 + ||m||^2 \ge ||x - y||^2$.