Solutions

1. If $x \perp y$, then $(x, y)=0$ and $(y, x)=\overline{(x, y)}=\overline{0}=0$, so

$$
\|x+y\|^{2}=(x+y, x+y)=(x, x)+(x, y)+(y, x)+(y, y)=\|x\|^{2}+\|y\|^{2} .
$$

2. Let $X=\ell_{\infty}$,

$$
Y=\{(\alpha, 0,0, \ldots): \alpha \in \mathbb{C}\} \leq X
$$

and $x_{0}:=(0,1,0,0, \ldots)$. Clearly, $d\left(x_{0}, Y\right)=1$ and for any $y=(\alpha, 0,0, \ldots)$ with $|\alpha| \leq 1$ we have $\left\|x_{0}-y\right\|=1$.
Other example:

$$
X=\ell_{1} ; Y=\{(\alpha, \alpha, 0, \ldots): \alpha \in \mathbb{C}\} \leq X ; x_{0}=(1,-1,0,0, \ldots)
$$

3. a) Let $x \in H$ be arbitrary. Since M is a closed linear subspace, by Riesz-lemma there exist $x_{1} \in M$ and $x_{2} \in M^{\perp}$ such that $x=x_{1}+x_{2}$. Then

$$
x \in\left(M^{\perp}\right)^{\perp} \Leftrightarrow\left(x, y_{2}\right)=0 \text { for all } y_{2} \in M^{\perp} \Leftrightarrow\left(x_{1}+x_{2}, y_{2}\right)=0 \text { for all } y_{2} \in M^{\perp}
$$

Since $x_{1} \perp y_{2}$, this is equivalent with

$$
\left(x_{2}, y_{2}\right)=0 \text { for all } y_{2} \in M^{\perp} \Leftrightarrow x_{2}=0 \Leftrightarrow x \in M
$$

b) We have seen earlier that $M^{\perp}=(\operatorname{cl}(\operatorname{span} M))^{\perp}$. It follows that

$$
\left(M^{\perp}\right)^{\perp}=\left((\operatorname{cl}(\operatorname{span} M))^{\perp}\right)^{\perp}=\operatorname{cl}(\operatorname{span} M)
$$

where in the last step we used part a) for the closed linear subspace $\operatorname{cl}(\operatorname{span} M)$.
4. First suppose that Y is a closed subspace. Then Y is a Hilbert space itself, so the Riesz representation theorem tells us that $\Lambda=\Lambda_{y}$ for some $y \in Y$. Also, $\widetilde{\Lambda}=\Lambda_{z}$ for some $z \in X$. We know that

$$
\|y\|=\left\|\Lambda_{y}\right\|=\|\Lambda\|=\|\widetilde{\Lambda}\|=\left\|\Lambda_{z}\right\|=\|z\|, \text { thus }\|y\|=\|z\| .
$$

On the other hand, $\widetilde{\Lambda}$ is an extension of Λ, so they coincide on Y, which yields that

$$
(u, y)=(u, z) \text { for all } u \in Y
$$

This means that $(u, z-y)=0$ for all $u \in Y$, so $z-y \in Y^{\perp}$. In particular, $z-y \perp y$. Then we get $\|z\|^{2}=\|y\|^{2}+\|z-y\|^{2}$ by Pythagorean theorem. However, $\|y\|=\|z\|$, so $\|z-y\|^{2}=0$, thus z must be equal to y, the extension is indeed unique.

If Y is not closed, then we first extend Λ to a bounded linear functional on cl Y. (Such an extension is unique, because Y is dense in $\mathrm{cl} Y$ and bounded linear functionals are continuous.) Then we can use the above argument for $\mathrm{cl} Y$.
5. Let

$$
y=\sum_{i=1}^{n}\left(x, e_{i}\right) e_{i} \in M
$$

Then for any $1 \leq j \leq n$:

$$
\left(y, e_{j}\right)=\left(\sum_{i=1}^{n}\left(x, e_{i}\right) e_{i}, e_{j}\right)=\sum_{i=1}^{n}\left(x, e_{i}\right) \cdot\left(e_{i}, e_{j}\right)=\left(x, e_{j}\right) .
$$

It means that

$$
\left(x-y, e_{j}\right)=\left(x, e_{j}\right)-\left(y, e_{j}\right)=0
$$

So $x-y$ is perpendicular to each e_{j}. Hence $x-y \in M^{\perp}$. (In other words, y is the orthogonal projection of x onto M.) Pythagorean theorem yields that y is the closest point of M to x : for any $m \in M$ we have $\|x-y+m\|^{2}=\|x-y\|^{2}+\|m\|^{2} \geq\|x-y\|^{2}$.

