Functional Analysis, BSM, Spring 2012

Exercise sheet: Operators on Hilbert spaces

Adjoint operator: for every bounded operator $T: H \rightarrow H$ there exists a unique bounded operator called the (Hilbert) adjoint of T and denoted by T^{*} such that $(T x, y)=\left(x, T^{*} y\right)$ for all $x, y \in H$. The adjoint has the following properties:

$$
(S+T)^{*}=S^{*}+T^{*} ;(\alpha T)^{*}=\bar{\alpha} T^{*} ;(S T)^{*}=T^{*} S^{*} ;\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*} ;\left(T^{*}\right)^{*}=T ;\left\|T^{*}\right\|=\|T\| ;\left\|T^{*} T\right\|=\|T\|^{2} .
$$

Definition: An operator $T \in B(H)$ is called

- self-adjoint if $T=T^{*}$;
- normal if $T T^{*}=T^{*} T$;
- unitary if $T T^{*}=T^{*} T=I$, that is, $T^{-1}=T^{*}$;
- positive if $(T x, x) \geq 0$ for all $x \in H$.

Note that self-adjoint and unitary operators are normal.

1. Let $H=\mathbb{C}^{n}$ with the usual inner product and $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ an arbitrary operator (linear transformation). We denote the corresponding $n \times n$ matrix by M.
a) What is the matrix corresponding to the adjoint operator T^{*} ?
b) What can you say about M for a self-adjoint operator T ?
2. Let T be the following $\ell_{2} \rightarrow \ell_{2}$ operator:

$$
T\left(\alpha_{1}, \alpha_{2}, \ldots\right)=\left(\frac{\alpha_{1}+\alpha_{2}}{2}, \frac{\alpha_{2}+\alpha_{3}}{2}, \frac{\alpha_{3}+\alpha_{4}}{2}, \ldots\right) .
$$

Determine the adjoint operator T^{*}.
3. Let $T \in B(H)$. Show that $T T^{*}$ and $T^{*} T$ are both self-adjoint operators.
4. W10P3. (8 points) Let H be a complex Hilbert space, $T \in B(H)$. Prove that the following are equivalent:

- T is self-adjoint;
- $(T x, x)$ is real for all $x \in X$.
5.* Let $T \in B(H)$ be a self-adjoint operator. Prove that

$$
\|T\|=\sup _{\|x\|=1}|(T x, x)|
$$

6. W10P4. (5 points)
a) Let $T \in B(H)$ be a self-adjoint operator. Use the previous exercise to show that if $(T x, x)=0$ for all $x \in H$, then $T=0$.
b) Prove that an operator $T \in B(H)$ is normal if and only if

$$
\|T x\|=\left\|T^{*} x\right\| \text { for all } x \in H
$$

7.* Prove the Hellinger-Toeplitz theorem: if the linear operators $S, T: H \rightarrow H$ satisfy $(S x, y)=(x, T y)$ for all $x, y \in H$, then S and T are necessarily bounded (and thus $S^{*}=T ; T^{*}=S$).

Solutions can be found on: www.renyi.hu/~harangi/bsm/

