Functional Analysis, BSM, Spring 2012

Exercise sheet: Operators on Hilbert spaces

Solutions

Proof of the listed properties of the Hilbert adjoint.

$$
\begin{array}{r}
((S+T) x, y)=(S x+T x, y)=(S x, y)+(T x, y)=\left(x, S^{*} y\right)+\left(x, T^{*} y\right)=\left(x,\left(S^{*}+T^{*}\right) y\right), \text { so }(S+T)^{*}=S^{*}+T^{*} ; \\
((\alpha T) x, y)=(\alpha T x, y)=\alpha(T x, y)=\alpha\left(x, T^{*} y\right)=\left(x,\left(\bar{\alpha} T^{*}\right) y\right), \text { so }(\alpha T)^{*}=\bar{\alpha} T^{*} ; \\
(S T x, y)=(S(T x), y)=\left(T x, S^{*} y\right)=\left(x, T^{*}\left(S^{*} y\right)\right)=\left(x,\left(T^{*} S^{*}\right) y\right), \text { so }(S T)^{*}=T^{*} S^{*} .
\end{array}
$$

Now we show that if T has a bounded inverse T^{-1} (i.e., $T T^{-1}=T^{-1} T=I$), then T^{*} is also invertible and

$$
\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*} .
$$

It is easy to see from the definition that $I^{*}=I$, so using that $(S T)^{*}=T^{*} S^{*}$ we obtain

$$
I=I^{*}=\left(T^{-1} T\right)^{*}=T^{*}\left(T^{-1}\right)^{*} \text { and } I=I^{*}=\left(T T^{-1}\right)^{*}=\left(T^{-1}\right)^{*} T^{*}
$$

so $\left(T^{-1}\right)^{*}$ is the inverse of T^{*} as claimed.

$$
\left(T^{*} x, y\right)=\overline{\left(y, T^{*} x\right)}=\overline{(T y, x)}=(x, T y), \text { thus }\left(T^{*}\right)^{*}=T
$$

We proved in class that $\left\|T^{*}\right\| \leq\|T\|$. Therefore

$$
\|T\|=\left\|\left(T^{*}\right)^{*}\right\| \leq\left\|T^{*}\right\| \leq\|T\| .
$$

Finally, we prove $\left\|T^{*} T\right\|=\|T\|^{2}$. We know that $\|S T\| \leq\|S\|\|T\|$, so using that $\left\|T^{*}\right\|=\|T\|$ we get

$$
\left\|T^{*} T\right\| \leq\left\|T^{*}\right\|\|T\|=\|T\|^{2} .
$$

For the reverse inequality, we notice that by Cauchy inequality

$$
\|T x\|^{2}=(T x, T x)=\left(x, T^{*} T x\right) \leq\|x\|\left\|T^{*} T x\right\| \leq\|x\|\left\|T^{*} T\right\|\|x\|=\left\|T^{*} T\right\|\|x\|^{2}
$$

Consequently,

$$
\|T\|^{2}=\left(\sup _{x \neq 0} \frac{\|T x\|}{\|x\|}\right)^{2}=\sup _{x \neq 0} \frac{\|T x\|^{2}}{\|x\|^{2}} \leq\left\|T^{*} T\right\|
$$

1. a) Let e_{1}, \ldots, e_{n} be the standard basis of \mathbb{C}^{n}. Then

$$
M_{i, j}=\left(T e_{i}, e_{j}\right)
$$

Let M^{*} denote the matrix corresponding to T^{*}. We have

$$
M_{i, j}^{*}=\left(T^{*} e_{i}, e_{j}\right)=\overline{\left(e_{j}, T^{*} e_{i}\right)}=\overline{\left(T e_{j}, e_{i}\right)}=\overline{M_{j, i}}
$$

so M^{*} is the conjugate transpose of M.
b) T is self-adjoint if and only if $M_{i, j}=\overline{M_{j, i}}$ holds for all i, j.
2. Let L denote the left shift operator. Then $T=\frac{1}{2}(I+L)$. It is easy to see that the adjoint of the left shift operator is the right shift operator R, thus $T^{*}=\frac{1}{2}(I+R)$.
3. Using $(S T)^{*}=T^{*} S^{*}$ and $\left(T^{*}\right)^{*}=T$:

$$
\left(T T^{*}\right)^{*}=\left(T^{*}\right)^{*} T^{*}=T T^{*}
$$

Similarly,

$$
\left(T^{*} T\right)^{*}=T^{*}\left(T^{*}\right)^{*}=T^{*} T
$$

4. If T is self-adjoint, then for any $x \in H$

$$
(T x, x)=\left(x, T^{*} x\right)=(x, T x)=\overline{(T x, x)},
$$

therefore $(T x, x)$ is real.
For the other direction, let $x, y \in H$ and $\alpha \in \mathbb{C}$. Then

$$
(T(\alpha x+y), \alpha x+y)=|\alpha|^{2}(T x, x)+(T y, y)+\alpha(T x, y)+\bar{\alpha}(T y, x) \in \mathbb{R}
$$

Since the first two terms on the right are also real,

$$
\begin{array}{r}
\alpha(T x, y)+\bar{\alpha}(T y, x)=\alpha(T x, y)+\overline{\alpha(x, T y)}=\alpha(T x, y)-\alpha(x, T y)+\alpha(x, T y)+\overline{\alpha(x, T y)}= \\
\alpha(T x, y)-\alpha(x, T y)+2 \Re(\alpha(x, T y)) \in \mathbb{R} .
\end{array}
$$

It follows that $\alpha(T x, y)-\alpha(x, T y)$ is real for all $\alpha \in \mathbb{C}$. Therefore $(T x, y)=(x, T y) ; T=T^{*}$.
5.* Let

$$
C=\sup _{\|x\|=1}|(T x, x)|=\sup _{x \neq 0} \frac{|(T x, x)|}{\|x\|^{2}} .
$$

If $\|x\|=1$, then it follows from Cauchy inequality that

$$
|(T x, x)| \leq\|T x\|\|x\| \leq\|T\|\|x\|^{2}=\|T\| \text {, so } C \leq\|T\| \text {. }
$$

To show the reverse inequality, suppose that $\|x\|=\|y\|=1$. Using

$$
(T(x+y), x+y)-(T(x-y), x-y))=2(T x, y)+2(T y, x)=4 \Re(T x, y)
$$

and the parallelogram law we obtain

$$
4 \Re(T x, y) \leq C\left(\|x+y\|^{2}+\|x-y\|^{2}\right)=2 C\left(\|x\|^{2}+\|y\|^{2}\right)=4 C
$$

Let α be a scalar with $|\alpha|=1$ such that $|(T x, y)|=\alpha(T x, y)=(T(\alpha x), y)$. Then

$$
|(T x, y)|=\Re(T(\alpha x), y) \leq C
$$

Plugging $y=T x /\|T x\|$ we get

$$
\|T x\|=\left|\left(T x, \frac{T x}{\|T x\|}\right)\right| \leq C, \text { whenever }\|x\|=1 .
$$

This implies $\|T\| \leq C$, we are done.
6. a) If $(T x, x)=0$ for all $x \in H$, then by the previous exercise

$$
\|T\|=\sup _{\|x\|=1}|(T x, x)|=0, \text { thus } T=0
$$

(If H is a complex Hilbert space, then $(T x, x)=0$ implies that T is self-adjoint, so we can omit that assumption. For a real Hilbert space H of dimension at least 2, however, there exists a nonzero $T \in B(H)$ such that $(T x, x)=0$ for all $x \in H$.)
b) Since

$$
(T x, T x)=\left(T^{*} T x, x\right) \text { and }\left(T^{*} x, T^{*} x\right)=\left(T T^{*} x, x\right),
$$

it follows that $\|T x\|=\left\|T^{*} x\right\|$ holds for all $x \in H$ if and only if

$$
\left(\left(T^{*} T-T T^{*}\right) x, x\right)=0 \text { for all } x \in H
$$

which is equivalent with $T^{*} T-T T^{*}=0$ by part a), because $T^{*} T-T T^{*}$ is self-adjoint (since both $T^{*} T$ and $T T^{*}$ are self-adjoint).
7.* We prove by contradiction. Assume that T is not bounded, that is, there exist $y_{1}, y_{2}, \ldots \in H$ such that

$$
\left\|y_{n}\right\| \leq 1 \text { for all } n \text { and }\left\|T y_{n}\right\| \rightarrow \infty \text { as } n \rightarrow \infty
$$

Consider the following linear functionals on H :

$$
\Lambda_{n} x \stackrel{\text { def }}{=}\left(S x, y_{n}\right)=\left(x, T y_{n}\right)
$$

Riesz representation theorem tells us that Λ_{n} is bounded with $\left\|\Lambda_{n}\right\|=\left\|T y_{n}\right\| \rightarrow \infty$. Then the uniform boundedness principle yields that there exists $x \in H$ for which the sequence $\left|\Lambda_{n} x\right|$ is unbounded. However,

$$
\left|\Lambda_{n} x\right|=\left|\left(S x, y_{n}\right)\right| \leq\|S x\|\left\|y_{n}\right\| \leq\|S x\|
$$

contradiction. So T is bounded.
Since $(S x, y)=(x, T y)$ implies that $(y, S x)=(T y, x)$, the same proof yields that S is bounded, too.

