
Functional Analysis, BSM, Spring 2012

Exercise sheet: Operators on Hilbert spaces

Solutions

Proof of the listed properties of the Hilbert adjoint.

((S + T )x, y) = (Sx+ Tx, y) = (Sx, y) + (Tx, y) = (x, S∗y) + (x, T ∗y) = (x, (S∗ + T ∗)y), so (S + T )∗ = S∗ + T ∗;
((αT )x, y) = (αTx, y) = α(Tx, y) = α(x, T ∗y) = (x, (αT ∗)y), so (αT )∗ = αT ∗;

(STx, y) = (S(Tx), y) = (Tx, S∗y) = (x, T ∗(S∗y)) = (x, (T ∗S∗)y), so (ST )∗ = T ∗S∗.

Now we show that if T has a bounded inverse T−1 (i.e., TT−1 = T−1T = I), then T ∗ is also invertible and

(T ∗)−1 =
(
T−1

)∗
.

It is easy to see from the de�nition that I∗ = I, so using that (ST )∗ = T ∗S∗ we obtain

I = I∗ =
(
T−1T

)∗
= T ∗

(
T−1

)∗
and I = I∗ =

(
TT−1

)∗
=
(
T−1

)∗
T ∗,

so
(
T−1

)∗
is the inverse of T ∗ as claimed.

(T ∗x, y) = (y, T ∗x) = (Ty, x) = (x, Ty), thus (T ∗)∗ = T.

We proved in class that ‖T ∗‖ ≤ ‖T‖. Therefore

‖T‖ =
∥∥(T ∗)∗

∥∥ ≤ ‖T ∗‖ ≤ ‖T‖.
Finally, we prove ‖T ∗T‖ = ‖T‖2. We know that ‖ST‖ ≤ ‖S‖‖T‖, so using that ‖T ∗‖ = ‖T‖ we get

‖T ∗T‖ ≤ ‖T ∗‖‖T‖ = ‖T‖2.

For the reverse inequality, we notice that by Cauchy inequality

‖Tx‖2 = (Tx, Tx) = (x, T ∗Tx) ≤ ‖x‖‖T ∗Tx‖ ≤ ‖x‖‖T ∗T‖‖x‖ = ‖T ∗T‖‖x‖2.

Consequently,

‖T‖2 =

(
sup
x 6=0

‖Tx‖
‖x‖

)2

= sup
x 6=0

‖Tx‖2

‖x‖2
≤ ‖T ∗T‖.

1. a) Let e1, . . . , en be the standard basis of Cn. Then

Mi,j = (Tei, ej).

Let M∗ denote the matrix corresponding to T ∗. We have

M∗i,j = (T ∗ei, ej) = (ej , T ∗ei) = (Tej , ei) = Mj,i,

so M∗ is the conjugate transpose of M .
b) T is self-adjoint if and only if Mi,j = Mj,i holds for all i, j.

2. Let L denote the left shift operator. Then T = 1
2 (I + L). It is easy to see that the adjoint of the left shift

operator is the right shift operator R, thus T ∗ = 1
2 (I +R).

3. Using (ST )∗ = T ∗S∗ and (T ∗)∗ = T :

(TT ∗)∗ = (T ∗)∗ T ∗ = TT ∗.

Similarly,
(T ∗T )∗ = T ∗ (T ∗)∗ = T ∗T.



4. If T is self-adjoint, then for any x ∈ H

(Tx, x) = (x, T ∗x) = (x, Tx) = (Tx, x),

therefore (Tx, x) is real.
For the other direction, let x, y ∈ H and α ∈ C. Then

(T (αx+ y), αx+ y) = |α|2(Tx, x) + (Ty, y) + α(Tx, y) + α(Ty, x) ∈ R.

Since the �rst two terms on the right are also real,

α(Tx, y) + α(Ty, x) = α(Tx, y) + α(x, Ty) = α(Tx, y)− α(x, Ty) + α(x, Ty) + α(x, Ty) =
α(Tx, y)− α(x, Ty) + 2< (α(x, Ty)) ∈ R.

It follows that α(Tx, y)− α(x, Ty) is real for all α ∈ C. Therefore (Tx, y) = (x, Ty); T = T ∗.

5.* Let

C = sup
‖x‖=1

|(Tx, x)| = sup
x6=0

|(Tx, x)|
‖x‖2

.

If ‖x‖ = 1, then it follows from Cauchy inequality that

|(Tx, x)| ≤ ‖Tx‖‖x‖ ≤ ‖T‖‖x‖2 = ‖T‖, so C ≤ ‖T‖.

To show the reverse inequality, suppose that ‖x‖ = ‖y‖ = 1. Using

(T (x+ y), x+ y)− (T (x− y), x− y)) = 2(Tx, y) + 2(Ty, x) = 4<(Tx, y)

and the parallelogram law we obtain

4<(Tx, y) ≤ C
(
‖x+ y‖2 + ‖x− y‖2

)
= 2C

(
‖x‖2 + ‖y‖2

)
= 4C.

Let α be a scalar with |α| = 1 such that |(Tx, y)| = α(Tx, y) = (T (αx), y). Then

|(Tx, y)| = <(T (αx), y) ≤ C.

Plugging y = Tx/‖Tx‖ we get

‖Tx‖ =
∣∣∣∣(Tx, Tx

‖Tx‖

)∣∣∣∣ ≤ C, whenever ‖x‖ = 1.

This implies ‖T‖ ≤ C, we are done.
6. a) If (Tx, x) = 0 for all x ∈ H, then by the previous exercise

‖T‖ = sup
‖x‖=1

|(Tx, x)| = 0, thus T = 0.

(IfH is a complex Hilbert space, then (Tx, x) = 0 implies that T is self-adjoint, so we can omit that assumption.
For a real Hilbert space H of dimension at least 2, however, there exists a nonzero T ∈ B(H) such that
(Tx, x) = 0 for all x ∈ H.)
b) Since

(Tx, Tx) = (T ∗Tx, x) and (T ∗x, T ∗x) = (TT ∗x, x),

it follows that ‖Tx‖ = ‖T ∗x‖ holds for all x ∈ H if and only if

((T ∗T − TT ∗)x, x) = 0 for all x ∈ H,

which is equivalent with T ∗T − TT ∗ = 0 by part a), because T ∗T − TT ∗ is self-adjoint (since both T ∗T and
TT ∗ are self-adjoint).

7.* We prove by contradiction. Assume that T is not bounded, that is, there exist y1, y2, . . . ∈ H such that

‖yn‖ ≤ 1 for all n and ‖Tyn‖ → ∞ as n→∞.

Consider the following linear functionals on H:

Λnx
def= (Sx, yn) = (x, Tyn).

Riesz representation theorem tells us that Λn is bounded with ‖Λn‖ = ‖Tyn‖ → ∞. Then the uniform
boundedness principle yields that there exists x ∈ H for which the sequence |Λnx| is unbounded. However,

|Λnx| = |(Sx, yn)| ≤ ‖Sx‖‖yn‖ ≤ ‖Sx‖,

contradiction. So T is bounded.
Since (Sx, y) = (x, Ty) implies that (y, Sx) = (Ty, x), the same proof yields that S is bounded, too.


