Functional Analysis, BSM, Spring 2012

Exercise sheet: Normal operators

Definition: an operator $T \in B(H)$ is called *normal* if $TT^* = T^*T$ (or equivalently, if $||Tx|| = ||T^*x||$ for all $x \in H$).

Recall: if X is a Banach space and $T \in B(X)$, then T is invertible if and only if T is bounded below and ran T is dense.

1. Is the left shift operator on ℓ_2 normal?

2. Prove the following statements.

a) ker $T^* = (\operatorname{ran} T)^{\perp}$;

b) $(\operatorname{ran} T^*)^{\perp} = \ker T;$

c) $(\ker T^*)^{\perp} = \operatorname{cl}(\operatorname{ran} T).$

3. Show that ker $T = \ker T^*$ if $T \in B(H)$ is normal.

4. a) Let $T \in B(H)$. Show that T is invertible if and only if it is bounded below and ker $T^* = \{0\}$.

b) Let $T \in B(H)$ be normal. Show that T is invertible if and only if it is bounded below.

Consequently, if T is normal, then $\lambda \in \sigma(T)$ if and only if $\lambda I - T$ is not bounded below, that is,

$$\inf_{\|x\|=1} \|(\lambda I - T)x\| = 0.$$
(1)

(When (1) holds, we say that λ is in the *approximate point spectrum* of T. So for normal operators the approximate point spectrum is the same as the spectrum.)

5. W10P5. (5 points) Let $T \in B(H)$ be normal, $x \in H$ and $\lambda \in \mathbb{C}$. Show that if $Tx = \lambda x$, then $T^*x = \overline{\lambda}x$.

6. W10P6. (6 points) Let $T \in B(H)$ be normal, $x, y \in H$ and $\lambda, \mu \in \mathbb{C}$. Suppose that $Tx = \lambda x$ and $Ty = \mu y$. Prove that if $\lambda \neq \mu$, then $x \perp y$.

7. W10P7. (8 points) Let $T \in B(H)$ be normal.

a) Show that ker T is T^* -invariant, that is, for any $x \in \ker T$ we also have $T^*x \in \ker T$.

b) Show that $(\ker T)^{\perp}$ is T-invariant.

c) Prove that $\ker T = \ker T^2$.

d) Prove that ker $T = \ker T^k$ for any positive integer k.

Solutions can be found on: www.renyi.hu/~harangi/bsm/