Functional Analysis, BSM, Spring 2012 Exercise sheet: Normal operators Solutions

1. We claim that the adjoint of the left shift operator $L: \ell_2 \to \ell_2$ is the right shift operator $R: \ell_2 \to \ell_2$. Let $x = (\alpha_1, \alpha_2, \ldots)$ and $y = (\beta_1, \beta_2, \ldots)$. Then

$$(Lx, y) = ((\alpha_2, \alpha_3, \alpha_4, \ldots), (\beta_1, \beta_2, \beta_3, \ldots)) = \alpha_2 \overline{\beta_1} + \alpha_3 \overline{\beta_2} + \alpha_4 \overline{\beta_3} + \cdots$$

 and

$$(x, Ry) = ((\alpha_1, \alpha_2, \alpha_3, \ldots), (0, \beta_1, \beta_2, \ldots)) = 0 + \alpha_2 \overline{\beta_1} + \alpha_3 \overline{\beta_2} + \alpha_4 \overline{\beta_3} + \cdots$$

therefore $L^* = R$. Since

$$LRx = (\alpha_1, \alpha_2, \alpha_3, \ldots)$$
 and $RLx = (0, \alpha_2, \alpha_3, \ldots),$

it follows that neither L nor R is normal.

2. a)

$$\begin{aligned} x \in \ker T^* \Leftrightarrow T^* x = 0 \Leftrightarrow (T^* x, y) = 0 \text{ for all } y \in H \Leftrightarrow (x, Ty) = 0 \text{ for all } y \in H \Leftrightarrow \\ (x, z) = 0 \text{ for all } z \in \operatorname{ran} T \Leftrightarrow x \in (\operatorname{ran} T)^{\perp}. \end{aligned}$$

b) Plug $T = T^*$ in a) and use $(T^*)^* = T$.

c) Take the orthogonal complement of both sides of a) and use $((\operatorname{ran} T)^{\perp})^{\perp} = \operatorname{cl}(\operatorname{ran} T)$.

3. For normal operators we have $||Tx|| = ||T^*x||$. Thus $Tx = 0 \Leftrightarrow T^*x = 0$.

4. a) Recall that in a Banach space X a bounded operator $T \in B(X)$ is invertible if and only if T is bounded below and ran T is dense. However, using 2c) we get

$$\operatorname{ran} T \operatorname{dense} \Leftrightarrow \operatorname{cl}(\operatorname{ran} T) = H \Leftrightarrow (\operatorname{ker} T^*)^{\perp} = H \Leftrightarrow \operatorname{ker} T^* = \{0\}.$$

b) For a normal operator ker $T^* = \ker T$, so we get that T is invertible if and only if it is bounded below and ker $T = \{0\}$. However, if T is bounded below, then ker $T = \{0\}$ holds automatically.

5. Using $(S+T)^* = S^* + T^*, \ (\alpha T)^* = \overline{\alpha} T^*$ and $I^* = I$ we get that

$$(\lambda I - T)^* = \overline{\lambda}I - T^*.$$

It easily follows that if T is normal, then so is $\lambda I - T$. Therefore

$$Tx = \lambda x \Leftrightarrow x \in \ker(\lambda I - T) \Leftrightarrow x \in \ker(\lambda I - T)^* = \ker(\overline{\lambda}I - T^*) \Leftrightarrow T^*x = \overline{\lambda}x$$

6. By the previous exercise $T^*y = \overline{\mu}y$. Thus

$$\lambda(x,y) = (\lambda x, y) = (Tx, y) = (x, T^*y) = (x, \overline{\mu}y) = \mu(x, y).$$

Consequently, $(\lambda - \mu)(x, y) = 0$. Since $\lambda \neq \mu$, it follows that (x, y) = 0, that is, $x \perp y$. 7. a) Let $x \in \ker T$, that is, Tx = 0. Then

$$TT^*x = T^*Tx = T^*0 = 0$$
, so $T^*x \in \ker T$.

b) Actually, $Tx \in (\ker T)^{\perp}$ for any $x \in H$: for every $y \in \ker T = \ker T^*$ we have

$$(Tx, y) = (x, T^*y) = (x, 0) = 0,$$

therefore $Tx \in (\ker T)^{\perp}$.

c-d) Let $x \in H$ be arbitrary. There exist $y \in \ker T$ and $z \in (\ker T)^{\perp}$ such that x = y + z. Then

$$Tx = Ty + Tz = Tz$$
, thus $T^k x = T^k z$ for all $k \ge 1$.

We know from part b) that $(\ker T)^{\perp}$ is *T*-invariant. Also, $\ker T \cap (\ker T)^{\perp} = \{0\}$. So if we restrict *T* to $(\ker T)^{\perp}$, then we get an injective $(\ker T)^{\perp} \to (\ker T)^{\perp}$ operator. Therefore $z = 0 \Leftrightarrow Tz = 0 \Leftrightarrow T^2 z = 0 \Leftrightarrow T^3 z = 0 \Leftrightarrow \cdots$.