Functional Analysis, BSM, Spring 2012

Exercise sheet: Normal operators Solutions

1. We claim that the adjoint of the left shift operator $L: \ell_{2} \rightarrow \ell_{2}$ is the right shift operator $R: \ell_{2} \rightarrow \ell_{2}$. Let $x=\left(\alpha_{1}, \alpha_{2}, \ldots\right)$ and $y=\left(\beta_{1}, \beta_{2}, \ldots\right)$. Then

$$
(L x, y)=\left(\left(\alpha_{2}, \alpha_{3}, \alpha_{4}, \ldots\right),\left(\beta_{1}, \beta_{2}, \beta_{3}, \ldots\right)\right)=\alpha_{2} \overline{\beta_{1}}+\alpha_{3} \overline{\beta_{2}}+\alpha_{4} \overline{\beta_{3}}+\cdots
$$

and

$$
(x, R y)=\left(\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right),\left(0, \beta_{1}, \beta_{2}, \ldots\right)\right)=0+\alpha_{2} \overline{\beta_{1}}+\alpha_{3} \overline{\beta_{2}}+\alpha_{4} \overline{\beta_{3}}+\cdots,
$$

therefore $L^{*}=R$. Since

$$
L R x=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right) \text { and } R L x=\left(0, \alpha_{2}, \alpha_{3}, \ldots\right)
$$

it follows that neither L nor R is normal.
2. a)

$$
\begin{array}{r}
x \in \operatorname{ker} T^{*} \Leftrightarrow T^{*} x=0 \Leftrightarrow\left(T^{*} x, y\right)=0 \text { for all } y \in H \Leftrightarrow(x, T y)=0 \text { for all } y \in H \Leftrightarrow \\
\qquad(x, z)=0 \text { for all } z \in \operatorname{ran} T \Leftrightarrow x \in(\operatorname{ran} T)^{\perp} .
\end{array}
$$

b) Plug $T=T^{*}$ in a) and use $\left(T^{*}\right)^{*}=T$.
c) Take the orthogonal complement of both sides of a) and use $\left((\operatorname{ran} T)^{\perp}\right)^{\perp}=\operatorname{cl}(\operatorname{ran} T)$.
3. For normal operators we have $\|T x\|=\left\|T^{*} x\right\|$. Thus $T x=0 \Leftrightarrow T^{*} x=0$.
4. a) Recall that in a Banach space X a bounded operator $T \in B(X)$ is invertible if and only if T is bounded below and $\operatorname{ran} T$ is dense. However, using 2c) we get

$$
\operatorname{ran} T \text { dense } \Leftrightarrow \operatorname{cl}(\operatorname{ran} T)=H \Leftrightarrow\left(\operatorname{ker} T^{*}\right)^{\perp}=H \Leftrightarrow \operatorname{ker} T^{*}=\{0\}
$$

b) For a normal operator $\operatorname{ker} T^{*}=\operatorname{ker} T$, so we get that T is invertible if and only if it is bounded below and $\operatorname{ker} T=\{0\}$. However, if T is bounded below, then $\operatorname{ker} T=\{0\}$ holds automatically.
5. Using $(S+T)^{*}=S^{*}+T^{*},(\alpha T)^{*}=\bar{\alpha} T^{*}$ and $I^{*}=I$ we get that

$$
(\lambda I-T)^{*}=\bar{\lambda} I-T^{*} .
$$

It easily follows that if T is normal, then so is $\lambda I-T$. Therefore

$$
T x=\lambda x \Leftrightarrow x \in \operatorname{ker}(\lambda I-T) \Leftrightarrow x \in \operatorname{ker}(\lambda I-T)^{*}=\operatorname{ker}\left(\bar{\lambda} I-T^{*}\right) \Leftrightarrow T^{*} x=\bar{\lambda} x .
$$

6. By the previous exercise $T^{*} y=\bar{\mu} y$. Thus

$$
\lambda(x, y)=(\lambda x, y)=(T x, y)=\left(x, T^{*} y\right)=(x, \bar{\mu} y)=\mu(x, y) .
$$

Consequently, $(\lambda-\mu)(x, y)=0$. Since $\lambda \neq \mu$, it follows that $(x, y)=0$, that is, $x \perp y$.
7. a) Let $x \in \operatorname{ker} T$, that is, $T x=0$. Then

$$
T T^{*} x=T^{*} T x=T^{*} 0=0, \text { so } T^{*} x \in \operatorname{ker} T .
$$

b) Actually, $T x \in(\operatorname{ker} T)^{\perp}$ for any $x \in H$: for every $y \in \operatorname{ker} T=\operatorname{ker} T^{*}$ we have

$$
(T x, y)=\left(x, T^{*} y\right)=(x, 0)=0
$$

therefore $T x \in(\operatorname{ker} T)^{\perp}$.
$\mathrm{c}-\mathrm{d})$ Let $x \in H$ be arbitrary. There exist $y \in \operatorname{ker} T$ and $z \in(\operatorname{ker} T)^{\perp}$ such that $x=y+z$. Then

$$
T x=T y+T z=T z, \text { thus } T^{k} x=T^{k} z \text { for all } k \geq 1
$$

We know from part b) that $(\operatorname{ker} T)^{\perp}$ is T-invariant. Also, $\operatorname{ker} T \cap(\operatorname{ker} T)^{\perp}=\{0\}$. So if we restrict T to $(\operatorname{ker} T)^{\perp}$, then we get an injective $(\operatorname{ker} T)^{\perp} \rightarrow(\operatorname{ker} T)^{\perp}$ operator. Therefore $z=0 \Leftrightarrow T z=0 \Leftrightarrow T^{2} z=0 \Leftrightarrow$ $T^{3} z=0 \Leftrightarrow \cdots$.

