Functional Analysis, BSM, Spring 2012

Exercise sheet: special operators

Definition: we say that an operator $T \in B(H)$ is

- unitary if $T^*T = TT^* = I$;
- positive if $(Tx, x) \ge 0$ for all $x \in H$;
- an isometry if ||Tx|| = ||x|| for all $x \in H$;
- a partial isometry if the restriction of T to $(\ker T)^{\perp}$ is an isometry, that is, ||Tx|| = ||x|| for all $x \in (\ker T)^{\perp}$.

Theorem: let H be a complex Hilbert space. Suppose that $T \in B(H)$ is normal and compact. Then there exists an orthonormal system s_1, s_2, \ldots and $\lambda_1, \lambda_2, \ldots \in \mathbb{C}$ such that $\lambda_n \to 0$ and

$$Tx = \sum_{n} \lambda_n(x, s_n) s_n$$
 for all $x \in H$

The converse is also true: any such operator is normal and compact.

1. a) Show that for any $T \in B(H)$ the operators TT^* and T^*T are both positive.

- b) Show that if T is self-adjoint, then T^2 is positive.
- 2. W11P1. (4 points)
- a) Find an $\ell_2 \rightarrow \ell_2$ isometry that is not surjective.

b) Find an $\ell_2 \rightarrow \ell_2$ partial isometry that is not injective.

c) Find an $\ell_2 \rightarrow \ell_2$ partial isometry that is neither injective, nor surjective.

3. Let $T \in B(H)$. Prove that the following are equivalent.

- (i) T is an isometry.
- (ii) (Tx, Ty) = (x, y) for all $x, y \in H$.
- (iii) $T^*T = I$.

4. W11P2. (5 points) Prove that the adjoint of an isometry is a surjective partial isometry.

5. Let $T \in B(H)$. Prove that T is unitary if and only if it is a surjective isometry.

6. W11P3. (8 points) Let $T \in B(H)$ be normal. Prove the following statements.

- a) $||T^2|| = ||T||^2$. (Hint: recall that $||S^*S|| = ||S||^2$. Use this for $S = T^2$, $S = T^*T$ and S = T.)
- b) $||T^{2^k}|| = ||T||^{2^k}$ for every positive integer k.
- c) r(T) = ||T||.
- d) $||T^n|| = ||T||^n$ for every positive integer n.

7.* Let H be a Hilbert space. Prove that an operator $T \in B(H)$ is compact if and only if it is the limit of finite rank operators (in the operator norm), that is, there exist $T_n \in B(H)$ such that dim $(\operatorname{ran} T_n) < \infty$ for all n and $||T - T_n|| \to 0$.

8. W11P4. (8 points) Show that the adjoint of a compact operator $T \in B(H)$ is compact.

9. Let *H* be a complex Hilbert space. Suppose that $T \in B(H)$ is normal and compact. Prove that *T* is positive if and only if each eigenvalue of *T* is a nonnegative real number.

10. Let H be a complex Hilbert space. Suppose that $T \in B(H)$ is positive and compact. Prove that there exists a positive compact operator $S \in B(H)$ such that $S^2 = T$.

11.* Let *L* be the left shift operator on ℓ_2 .

a) Prove that ||L - U|| = 2 for every unitary operator $U \in B(\ell_2)$.

b) Prove that $||L - T|| \ge 1$ for every compact operator $T \in B(\ell_2)$.

12.* Let *H* be a complex Hilbert space and $T \in B(H)$. Prove that $w(T^2) \leq w(T)^2$, where *w* denotes the numerical radius:

$$w(T) \stackrel{\text{def}}{=} \sup_{\|x\|=1} |(Tx, x)|.$$

13. Let *H* be a complex Hilbert space. Prove that if $T \in B(H)$ is normal, then w(T) = ||T||. (Hint: use $||S|| \leq 2w(S)$ with $S = T^{2^k}$.)

Solutions can be found on: www.renyi.hu/~harangi/bsm/