
Functional Analysis, BSM, Spring 2012

Exercise sheet: special operators

Solutions

1. a)
(TT ∗x, x) = (T ∗x, T ∗x) = ‖T ∗x‖2 ≥ 0 and (T ∗Tx, x) = (Tx, Tx) = ‖Tx‖2 ≥ 0.

b) If T is self-adjoint, then T 2 = TT ∗ is positive by part a).

2. a) Right shift operator.
b) Left shift operator.
c) T : (α1, α2, α3, . . .) 7→ (α1, 0, 0, . . .).
3. (i)⇒ (ii): using the polarisation formula we get

(Tx, Ty) =
1
4

3∑
k=0

ik‖Tx+ ikTy‖2 =
1
4

3∑
k=0

ik‖T (x+ iky)‖2 =
1
4

3∑
k=0

ik‖x+ iky‖2 = (x, y).

(ii)⇒ (iii): for any �xed y ∈ H we have

(x, y) = (Tx, Ty) = (x, T ∗Ty), thus (x, (T ∗T − I)y) = 0 for all x ∈ H.

Therefore (T ∗T − I)y = 0. This holds for every y ∈ H, so T ∗T = I.
(iii)⇒ (i):

‖Tx‖2 = (Tx, Tx) = (x, T ∗Tx) = (x, Ix) = (x, x) = ‖x‖2.

4. If T is an isometry, then T ∗T = I by the previous exercise. It readily follows that T ∗ must be surjective. It
remains to prove that T ∗ is a partial isometry, that is,

‖T ∗x‖ = ‖x‖ for any x ∈ (kerT ∗)⊥.

We have seen that (kerT ∗)⊥ = cl(ranT ). Since T is an isometry, T is bounded below, so ranT is closed.
Therefore (kerT ∗)⊥ = ranT . It means that for any x ∈ (kerT ∗)⊥ there exists y ∈ H such that x = Ty. Then

‖T ∗x‖ = ‖T ∗Ty‖ = ‖Iy‖ = ‖y‖ = ‖Ty‖ = ‖x‖.

5. T is unitary ⇔ T ∗T = TT ∗ = I ⇔ T ∗T = I and T is surjective ⇔ T is an isometry and T is surjective.
(We used Exercise 3 at the last step.)

6. First we notice that (T 2)∗ = (TT )∗ = T ∗T ∗ and (T ∗T )∗ = T ∗T . We use the equality ‖S∗S‖ = ‖S‖2 for

S = T 2 : ‖T ∗T ∗TT‖ = ‖T 2‖2

and
S = T ∗T : ‖T ∗TT ∗T‖ = ‖T ∗T‖2 = ‖T‖4.

For a normal operator T the left-hand sides of the equations coincide, therefore the right-hand sides are the
same, too, thus ‖T 2‖ = ‖T‖2 as claimed.
Second solution. If T is normal, then

‖T 2x‖2 = (TTx, TTx) = (Tx, T ∗TTx) = (Tx, TT ∗Tx) = (T ∗Tx, T ∗Tx) = ‖T ∗Tx‖2

for all x ∈ H. Therefore ‖T 2‖ = ‖T ∗T‖ = ‖T‖2.
b) Clearly, if T is normal, then so is T 2. So we can use part a) for the operators T, T 2, . . . , T 2k−1

:

‖T 2k

‖ = ‖T 2k−1
‖2 = ‖T 2k−2

‖4 = . . . = ‖T‖2
k

.

c) We know that

r(T ) = lim
n→∞

n
√
‖Tn‖.

However, for n = 2k we have n
√
‖Tn‖ = ‖T‖ by part b). Therefore r(T ) = ‖T‖.

d) We also know that

r(T ) = inf
n

n
√
‖Tn‖.

Since r(T ) = ‖T‖, it follows that ‖Tn‖ ≥ r(T )n = ‖T‖n. The converse inequality ‖Tn‖ ≤ ‖T‖n holds for any
operator T .



7.* We saw earlier that the �if� part is true even in Banach spaces.
For the �only if� part, suppose that T is compact. Then the image T (B1(0)) of the unit ball is totally

bounded, that is, it has a �nite ε-lattice for any ε > 0: yε
1, . . . , y

ε
mε
∈ H. By Yε we denote the linear subspace

spanned by yε
1, . . . , y

ε
mε

; Yε is �nite dimensional, so it is closed. Let Pε denote the orthogonal projcetion onto
Yε and let Tε = PεT . Since Pε is of �nite rank, so is Tε. So it su�ces to prove that

‖T − Tε‖ ≤ 2ε.

Let x ∈ H be arbitrary with ‖x‖ < 1. Since Tx ∈ T (B1(0)), there exists 1 ≤ k ≤ mε such that ‖Tx− yk‖ ≤ ε.
Since ‖Pε‖ = 1, it follows that ‖PεTx− Pεyk‖ ≤ ε. However, Pεyk = yk, so

‖(T − Tε)x‖ = ‖Tx− PεTx‖ ≤ ‖Tx− yk‖+ ‖PεTx− yk‖ ≤ ε+ ε = 2ε.

Since this holds for any x ∈ H with ‖x‖ < 1, we get ‖T − Tε‖ ≤ 2ε as claimed.

8. Suppose that T is compact. The previous exercise yields that there exists �nite rank operators Tn such that
‖T − Tn‖ → 0. Then

‖T ∗ − T ∗n‖ = ‖(T − Tn)∗‖ = ‖T − Tn‖ → 0.

We use the fact that the adjoint of a �nite rank operator also has �nite rank. So T ∗ is the limit of �nite rank
operators. As such, it is compact (again by the previous exercise).

It remains to verify that if T has �nite rank, then so does T ∗. Using cl(ranT ∗) = (kerT )⊥ and H =
kerT ⊕ (kerT )⊥ we get

cl(ranT ∗) = (kerT )⊥ ∼= H/ kerT ∼= ranT.

(Here ∼= means linear isomorphism.) It follows that if ranT is �nite dimensional, then so is ranT ∗, we are
done.
Second solution. Let (xn) be any bounded sequence in H; ‖xn‖ ≤M for all n. We need to prove that (T ∗xn)
has a convergent subsequence. Since T ∗ is a bounded operator, the sequence (T ∗xn) is also bounded. Then,
by compactness of T , there exists a subsequence (ni) for which (TT ∗xni

) is convergent and thus Cauchy. Then
(T ∗xni

) is also Cauchy:

‖T ∗xni
− T ∗xnj

‖2 = (T ∗(xni
− xnj

), T ∗(xni
− xnj

)) = (TT ∗(xni
− xnj

), xni
− xnj

) ≤
‖TT ∗(xni

− xnj
)‖‖xni

− xnj
‖ ≤ 2M‖TT ∗xni

− TT ∗xnj
‖.

Since we are in a complete space, it follows that (T ∗xni
) is convergent.

9. The claim follows easily from the Hilbert-Schmidt theorem. We use the notations of the theorem. It is
easy to see that each λn is an eigenvalue with eigenvector sn and the only other possible eigenvalue is 0. If
λn /∈ [0,∞) for some n, then (Tsn, sn) = (λnsn, sn) = λn, thus T is not positive. If λn ∈ [0,∞) for all n, then

(Tx, x) =
∑

n

λn|(x, sn)|2 ≥ 0,

so T is positive.

10. Since the underlying �eld is C, being positive implies being normal (see Exercise 4 on �Operators on Hilbert
spaces�). Therefore the previous exercise tells us that λn ∈ [0,∞) for all n. Set

Sx =
∑

n

√
λn(x, sn)sn for x ∈ H.

Clearly, S is positive, compact and it satis�es S2 = T .

11.* a) We have seen that the adjoint of the left shift operator L is the right shift operator R, so

‖L− U‖ = ‖(L− U)∗‖ = ‖R− U∗‖.

Notice that
U is unitary ⇔ U∗ is unitary ⇔ −U∗ is unitary.

So it is enough to show that ‖R + U‖ = 2 for any unitary operator U . Every isometry has operator norm 1,
thus

‖R+ U‖ ≤ ‖R‖+ ‖U‖ ≤ 1 + 1 = 2.



So we need to prove that there exists x ∈ H with ‖x‖ = 1 such that ‖(R+U)x‖ is arbitrarily close to 2. Since
U−1 = U∗ is also an isometry, we have

‖(R+ U)x‖ = ‖U−1(R+ U)x‖ = ‖U−1Rx+ x‖.

Therefore it su�ces to show that 1 is in the approximate point spectrum of U−1R. Let V
def= U−1R; it is clearly

an isometry. Also, since R is not surjective, neither is V . We claim that the approximate point spectrum of
every non-surjective isometry V is the closed unit disk {λ ∈ C : |λ| ≤ 1}. Since V is an isometry, it is bounded
below, so ranV is closed. Also, ranV 6= H, because V is not surjective. Therefore (ranV )⊥ 6= {0}. Let
s0 ∈ (ranV )⊥ with ‖s0‖ = 1 and let sn = V ns0. Then sn ∈ ranV for all n. Consequently, (s0, sn) = 0.
However, V is an isometry, so it preserves the inner product and so does V m:

(sm, sm+n) = (V ms0, V
msn) = (s0, sn) = 0.

Also,
(sm, sm) = (V ms0, V

ms0) = (s0, s0) = 1.

Thus (sn) is an orthonormal system and V sn = sn+1. (Basically, V acts like a right shift on cl(span{s0, s1, . . .}).)
Now it is easy to see that the approximate point spectrum is the closed unit disk. Since ‖V ‖ = 1, the spectrum
cannot contain any point outside the unit disk. If |λ| ≤ 1, then for

xN =
1√
N

N−1∑
n=0

λN−1−nsn

we have ‖xN‖ = 1 and

‖V xN − λxN‖ =
1√
N
‖sN − λNs0‖ ≤

2√
N
,

which converges to 0 as N →∞. Consequently, λ is in the approximate point spectrum.
b) Let A denote the image of the closed unit ball, that is, A = T (B1(0)), and let (en) be the standard
orthonormal basis of `2. Then Len+1 = en for n ≥ 1, thus

‖L− T‖ ≥ ‖(L− T )en+1‖ = ‖en − Ten+1‖ ≥ d(en, A).

So it su�ces to show that d(en, A)→ 1 as n→∞. Since T is compact, A is totally bounded, so it has a �nite
ε-lattice L ⊂ A for any �xed ε > 0. Let x ∈ L. We know that

∞∑
n=1

|(x, en)|2 = ‖x‖2 <∞,

thus |(x, en)| → 0 as n→∞. Since L is �nite, there exists N such that |(x, en)| < ε for all x ∈ L and n ≥ N .
Therefore

1− ε < (en, en)− |(x, en)| ≤ |(en − x, en)| ≤ ‖en − x‖‖en‖ = ‖en − x‖,

whenever x ∈ L and n ≥ N . Since L is an ε-lattice of A, we get that

‖en − y‖ > 1− 2ε,

whenever y ∈ A and n ≥ N . Since 0 ∈ A, we have 1 ≥ d(en, A) > 1− 2ε, and d(en, A)→ 1 follows.

12.* If ‖x‖ = ‖y‖ = 1, then

|2(Tx, y) + 2(Ty, x)| = |(T (x+ y), x+ y)− (T (x− y), x− y)| ≤ |(T (x+ y), x+ y)|+ |(T (x− y), x− y)| ≤
w(T )

(
‖x+ y‖2 + ‖x− y‖2

)
= 2w(T )

(
‖x‖2 + ‖y‖2

)
= 4w(T ).

For arbitrary nonzero x, y ∈ H using the above inequality for x/‖x‖ and y/‖y‖ we get

|(Tx, y) + (Ty, x)| ≤ 2w(T )‖x‖‖y‖.

Plugging y = Tx into this: ∣∣‖Tx‖2 + (T 2x, x)
∣∣ ≤ 2w(T )‖x‖‖Tx‖.



Using this for αT instead of T , where α ∈ C with |α| = 1:∣∣‖Tx‖2 + α2(T 2x, x)
∣∣ ≤ 2w(T )‖x‖‖Tx‖.

This holds for all complex α of unit length, therefore

‖Tx‖2 +
∣∣(T 2x, x)

∣∣ ≤ 2w(T )‖x‖‖Tx‖.

Consequently,∣∣(T 2x, x)
∣∣ ≤ 2w(T )‖x‖‖Tx‖ − ‖Tx‖2 = w(T )2‖x‖2 − (w(T )‖x‖ − ‖Tx‖)2 ≤ w(T )2‖x‖2,

which clearly implies w(T 2) ≤ w(T )2, we are done.

13. We proved in class that ‖S‖ ≤ 2w(S) for any operator S ∈ B(H). Plugging S = T 2k

and using ‖T 2k‖ =
‖T‖2k

(see Exercise 6):

‖T‖2
k

= ‖T 2k

‖ ≤ 2w(T 2k

).

However, by the previous exercise:

w(T 2k

) ≤ w(T 2k−1
)2 ≤ w(T 2k−2

)4 ≤ · · · ≤ w(T )2
k

.

Therefore,

‖T‖2
k

≤ 2w(T )2
k

, thus ‖T‖ ≤ 2k√
2w(T ).

We get ‖T‖ ≤ w(T ) in the limit (as k →∞). Since the reverse inequality is trivial, we are done.


