Functional Analysis, BSM, Spring 2012

Exercise sheet: special operators

Solutions

1. a)

$$
\left(T T^{*} x, x\right)=\left(T^{*} x, T^{*} x\right)=\left\|T^{*} x\right\|^{2} \geq 0 \text { and }\left(T^{*} T x, x\right)=(T x, T x)=\|T x\|^{2} \geq 0 .
$$

b) If T is self-adjoint, then $T^{2}=T T^{*}$ is positive by part a).
2. a) Right shift operator.
b) Left shift operator.
c) $T:\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right) \mapsto\left(\alpha_{1}, 0,0, \ldots\right)$.
3. (i) \Rightarrow (ii): using the polarisation formula we get

$$
(T x, T y)=\frac{1}{4} \sum_{k=0}^{3} i^{k}\left\|T x+i^{k} T y\right\|^{2}=\frac{1}{4} \sum_{k=0}^{3} i^{k}\left\|T\left(x+i^{k} y\right)\right\|^{2}=\frac{1}{4} \sum_{k=0}^{3} i^{k}\left\|x+i^{k} y\right\|^{2}=(x, y) .
$$

(ii) \Rightarrow (iii): for any fixed $y \in H$ we have

$$
(x, y)=(T x, T y)=\left(x, T^{*} T y\right), \text { thus }\left(x,\left(T^{*} T-I\right) y\right)=0 \text { for all } x \in H .
$$

Therefore $\left(T^{*} T-I\right) y=0$. This holds for every $y \in H$, so $T^{*} T=I$.
(iii) \Rightarrow (i):

$$
\|T x\|^{2}=(T x, T x)=\left(x, T^{*} T x\right)=(x, I x)=(x, x)=\|x\|^{2} .
$$

4. If T is an isometry, then $T^{*} T=I$ by the previous exercise. It readily follows that T^{*} must be surjective. It remains to prove that T^{*} is a partial isometry, that is,

$$
\left\|T^{*} x\right\|=\|x\| \text { for any } x \in\left(\operatorname{ker} T^{*}\right)^{\perp} .
$$

We have seen that $\left(\operatorname{ker} T^{*}\right)^{\perp}=\operatorname{cl}(\operatorname{ran} T)$. Since T is an isometry, T is bounded below, so $\operatorname{ran} T$ is closed. Therefore $\left(\operatorname{ker} T^{*}\right)^{\perp}=\operatorname{ran} T$. It means that for any $x \in\left(\operatorname{ker} T^{*}\right)^{\perp}$ there exists $y \in H$ such that $x=T y$. Then

$$
\left\|T^{*} x\right\|=\left\|T^{*} T y\right\|=\|I y\|=\|y\|=\|T y\|=\|x\| .
$$

5. T is unitary $\Leftrightarrow T^{*} T=T T^{*}=I \Leftrightarrow T^{*} T=I$ and T is surjective $\Leftrightarrow T$ is an isometry and T is surjective. (We used Exercise 3 at the last step.)
6. First we notice that $\left(T^{2}\right)^{*}=(T T)^{*}=T^{*} T^{*}$ and $\left(T^{*} T\right)^{*}=T^{*} T$. We use the equality $\left\|S^{*} S\right\|=\|S\|^{2}$ for

$$
S=T^{2}:\left\|T^{*} T^{*} T T\right\|=\left\|T^{2}\right\|^{2}
$$

and

$$
S=T^{*} T:\left\|T^{*} T T^{*} T\right\|=\left\|T^{*} T\right\|^{2}=\|T\|^{4} .
$$

For a normal operator T the left-hand sides of the equations coincide, therefore the right-hand sides are the same, too, thus $\left\|T^{2}\right\|=\|T\|^{2}$ as claimed.
Second solution. If T is normal, then

$$
\left\|T^{2} x\right\|^{2}=(T T x, T T x)=\left(T x, T^{*} T T x\right)=\left(T x, T T^{*} T x\right)=\left(T^{*} T x, T^{*} T x\right)=\left\|T^{*} T x\right\|^{2}
$$

for all $x \in H$. Therefore $\left\|T^{2}\right\|=\left\|T^{*} T\right\|=\|T\|^{2}$.
b) Clearly, if T is normal, then so is T^{2}. So we can use part a) for the operators $T, T^{2}, \ldots, T^{2^{k-1}}$:

$$
\left\|T^{2^{k}}\right\|=\left\|T^{2^{k-1}}\right\|^{2}=\left\|T^{2^{k-2}}\right\|^{4}=\ldots=\|T\|^{2^{k}}
$$

c) We know that

$$
r(T)=\lim _{n \rightarrow \infty} \sqrt[n]{\left\|T^{n}\right\|}
$$

However, for $n=2^{k}$ we have $\sqrt[n]{\left\|T^{n}\right\|}=\|T\|$ by part b). Therefore $r(T)=\|T\|$.
d) We also know that

$$
r(T)=\inf _{n} \sqrt[n]{\left\|T^{n}\right\|}
$$

Since $r(T)=\|T\|$, it follows that $\left\|T^{n}\right\| \geq r(T)^{n}=\|T\|^{n}$. The converse inequality $\left\|T^{n}\right\| \leq\|T\|^{n}$ holds for any operator T.
7.* We saw earlier that the "if" part is true even in Banach spaces.

For the "only if" part, suppose that T is compact. Then the image $T\left(B_{1}(0)\right)$ of the unit ball is totally bounded, that is, it has a finite ε-lattice for any $\varepsilon>0: y_{1}^{\varepsilon}, \ldots, y_{m_{\varepsilon}}^{\varepsilon} \in H$. By Y_{ε} we denote the linear subspace spanned by $y_{1}^{\varepsilon}, \ldots, y_{m_{\varepsilon}}^{\varepsilon} ; Y_{\varepsilon}$ is finite dimensional, so it is closed. Let P_{ε} denote the orthogonal projcetion onto Y_{ε} and let $T_{\varepsilon}=P_{\varepsilon} T$. Since P_{ε} is of finite rank, so is T_{ε}. So it suffices to prove that

$$
\left\|T-T_{\varepsilon}\right\| \leq 2 \varepsilon
$$

Let $x \in H$ be arbitrary with $\|x\|<1$. Since $T x \in T\left(B_{1}(0)\right)$, there exists $1 \leq k \leq m_{\varepsilon}$ such that $\left\|T x-y_{k}\right\| \leq \varepsilon$. Since $\left\|P_{\varepsilon}\right\|=1$, it follows that $\left\|P_{\varepsilon} T x-P_{\varepsilon} y_{k}\right\| \leq \varepsilon$. However, $P_{\varepsilon} y_{k}=y_{k}$, so

$$
\left\|\left(T-T_{\varepsilon}\right) x\right\|=\left\|T x-P_{\varepsilon} T x\right\| \leq\left\|T x-y_{k}\right\|+\left\|P_{\varepsilon} T x-y_{k}\right\| \leq \varepsilon+\varepsilon=2 \varepsilon
$$

Since this holds for any $x \in H$ with $\|x\|<1$, we get $\left\|T-T_{\varepsilon}\right\| \leq 2 \varepsilon$ as claimed.
8. Suppose that T is compact. The previous exercise yields that there exists finite rank operators T_{n} such that $\left\|T-T_{n}\right\| \rightarrow 0$. Then

$$
\left\|T^{*}-T_{n}^{*}\right\|=\left\|\left(T-T_{n}\right)^{*}\right\|=\left\|T-T_{n}\right\| \rightarrow 0
$$

We use the fact that the adjoint of a finite rank operator also has finite rank. So T^{*} is the limit of finite rank operators. As such, it is compact (again by the previous exercise).

It remains to verify that if T has finite rank, then so does T^{*}. Using cl($\left.\operatorname{ran} T^{*}\right)=(\operatorname{ker} T)^{\perp}$ and $H=$ $\operatorname{ker} T \oplus(\operatorname{ker} T)^{\perp}$ we get

$$
\operatorname{cl}\left(\operatorname{ran} T^{*}\right)=(\operatorname{ker} T)^{\perp} \cong H / \operatorname{ker} T \cong \operatorname{ran} T
$$

(Here \cong means linear isomorphism.) It follows that if $\operatorname{ran} T$ is finite dimensional, then so is ran T^{*}, we are done.
Second solution. Let $\left(x_{n}\right)$ be any bounded sequence in $H ;\left\|x_{n}\right\| \leq M$ for all n. We need to prove that ($\left.T^{*} x_{n}\right)$ has a convergent subsequence. Since T^{*} is a bounded operator, the sequence $\left(T^{*} x_{n}\right)$ is also bounded. Then, by compactness of T, there exists a subsequence $\left(n_{i}\right)$ for which $\left(T T^{*} x_{n_{i}}\right)$ is convergent and thus Cauchy. Then $\left(T^{*} x_{n_{i}}\right)$ is also Cauchy:

$$
\begin{array}{r}
\left\|T^{*} x_{n_{i}}-T^{*} x_{n_{j}}\right\|^{2}=\left(T^{*}\left(x_{n_{i}}-x_{n_{j}}\right), T^{*}\left(x_{n_{i}}-x_{n_{j}}\right)\right)=\left(T T^{*}\left(x_{n_{i}}-x_{n_{j}}\right), x_{n_{i}}-x_{n_{j}}\right) \leq \\
\left\|T T^{*}\left(x_{n_{i}}-x_{n_{j}}\right)\right\|\left\|x_{n_{i}}-x_{n_{j}}\right\| \leq 2 M\left\|T T^{*} x_{n_{i}}-T T^{*} x_{n_{j}}\right\| .
\end{array}
$$

Since we are in a complete space, it follows that $\left(T^{*} x_{n_{i}}\right)$ is convergent.
9. The claim follows easily from the Hilbert-Schmidt theorem. We use the notations of the theorem. It is easy to see that each λ_{n} is an eigenvalue with eigenvector s_{n} and the only other possible eigenvalue is 0 . If $\lambda_{n} \notin[0, \infty)$ for some n, then $\left(T s_{n}, s_{n}\right)=\left(\lambda_{n} s_{n}, s_{n}\right)=\lambda_{n}$, thus T is not positive. If $\lambda_{n} \in[0, \infty)$ for all n, then

$$
(T x, x)=\sum_{n} \lambda_{n}\left|\left(x, s_{n}\right)\right|^{2} \geq 0
$$

so T is positive.
10. Since the underlying field is \mathbb{C}, being positive implies being normal (see Exercise 4 on "Operators on Hilbert spaces"). Therefore the previous exercise tells us that $\lambda_{n} \in[0, \infty)$ for all n. Set

$$
S x=\sum_{n} \sqrt{\lambda_{n}}\left(x, s_{n}\right) s_{n} \text { for } x \in H
$$

Clearly, S is positive, compact and it satisfies $S^{2}=T$.
11.* a) We have seen that the adjoint of the left shift operator L is the right shift operator R, so

$$
\|L-U\|=\left\|(L-U)^{*}\right\|=\left\|R-U^{*}\right\|
$$

Notice that

$$
U \text { is unitary } \Leftrightarrow U^{*} \text { is unitary } \Leftrightarrow-U^{*} \text { is unitary. }
$$

So it is enough to show that $\|R+U\|=2$ for any unitary operator U. Every isometry has operator norm 1, thus

$$
\|R+U\| \leq\|R\|+\|U\| \leq 1+1=2
$$

So we need to prove that there exists $x \in H$ with $\|x\|=1$ such that $\|(R+U) x\|$ is arbitrarily close to 2 . Since $U^{-1}=U^{*}$ is also an isometry, we have

$$
\|(R+U) x\|=\left\|U^{-1}(R+U) x\right\|=\left\|U^{-1} R x+x\right\|
$$

Therefore it suffices to show that 1 is in the approximate point spectrum of $U^{-1} R$. Let $V \stackrel{\text { def }}{=} U^{-1} R$; it is clearly an isometry. Also, since R is not surjective, neither is V. We claim that the approximate point spectrum of every non-surjective isometry V is the closed unit disk $\{\lambda \in \mathbb{C}:|\lambda| \leq 1\}$. Since V is an isometry, it is bounded below, so $\operatorname{ran} V$ is closed. Also, $\operatorname{ran} V \neq H$, because V is not surjective. Therefore $(\operatorname{ran} V)^{\perp} \neq\{0\}$. Let $s_{0} \in(\operatorname{ran} V)^{\perp}$ with $\left\|s_{0}\right\|=1$ and let $s_{n}=V^{n} s_{0}$. Then $s_{n} \in \operatorname{ran} V$ for all n. Consequently, $\left(s_{0}, s_{n}\right)=0$. However, V is an isometry, so it preserves the inner product and so does V^{m} :

$$
\left(s_{m}, s_{m+n}\right)=\left(V^{m} s_{0}, V^{m} s_{n}\right)=\left(s_{0}, s_{n}\right)=0
$$

Also,

$$
\left(s_{m}, s_{m}\right)=\left(V^{m} s_{0}, V^{m} s_{0}\right)=\left(s_{0}, s_{0}\right)=1
$$

Thus $\left(s_{n}\right)$ is an orthonormal system and $V s_{n}=s_{n+1}$. (Basically, V acts like a right shift on $\operatorname{cl}\left(\operatorname{span}\left\{s_{0}, s_{1}, \ldots\right\}\right)$.) Now it is easy to see that the approximate point spectrum is the closed unit disk. Since $\|V\|=1$, the spectrum cannot contain any point outside the unit disk. If $|\lambda| \leq 1$, then for

$$
x_{N}=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \lambda^{N-1-n} s_{n}
$$

we have $\left\|x_{N}\right\|=1$ and

$$
\left\|V x_{N}-\lambda x_{N}\right\|=\frac{1}{\sqrt{N}}\left\|s_{N}-\lambda^{N} s_{0}\right\| \leq \frac{2}{\sqrt{N}}
$$

which converges to 0 as $N \rightarrow \infty$. Consequently, λ is in the approximate point spectrum.
b) Let A denote the image of the closed unit ball, that is, $A=T\left(\bar{B}_{1}(0)\right)$, and let $\left(e_{n}\right)$ be the standard orthonormal basis of ℓ_{2}. Then $L e_{n+1}=e_{n}$ for $n \geq 1$, thus

$$
\|L-T\| \geq\left\|(L-T) e_{n+1}\right\|=\left\|e_{n}-T e_{n+1}\right\| \geq d\left(e_{n}, A\right)
$$

So it suffices to show that $d\left(e_{n}, A\right) \rightarrow 1$ as $n \rightarrow \infty$. Since T is compact, A is totally bounded, so it has a finite ε-lattice $L \subset A$ for any fixed $\varepsilon>0$. Let $x \in L$. We know that

$$
\sum_{n=1}^{\infty}\left|\left(x, e_{n}\right)\right|^{2}=\|x\|^{2}<\infty
$$

thus $\left|\left(x, e_{n}\right)\right| \rightarrow 0$ as $n \rightarrow \infty$. Since L is finite, there exists N such that $\left|\left(x, e_{n}\right)\right|<\varepsilon$ for all $x \in L$ and $n \geq N$. Therefore

$$
1-\varepsilon<\left(e_{n}, e_{n}\right)-\left|\left(x, e_{n}\right)\right| \leq\left|\left(e_{n}-x, e_{n}\right)\right| \leq\left\|e_{n}-x\right\|\left\|e_{n}\right\|=\left\|e_{n}-x\right\|
$$

whenever $x \in L$ and $n \geq N$. Since L is an ε-lattice of A, we get that

$$
\left\|e_{n}-y\right\|>1-2 \varepsilon
$$

whenever $y \in A$ and $n \geq N$. Since $0 \in A$, we have $1 \geq d\left(e_{n}, A\right)>1-2 \varepsilon$, and $d\left(e_{n}, A\right) \rightarrow 1$ follows.
12.* If $\|x\|=\|y\|=1$, then

$$
\begin{array}{r}
|2(T x, y)+2(T y, x)|=|(T(x+y), x+y)-(T(x-y), x-y)| \leq|(T(x+y), x+y)|+|(T(x-y), x-y)| \leq \\
w(T)\left(\|x+y\|^{2}+\|x-y\|^{2}\right)=2 w(T)\left(\|x\|^{2}+\|y\|^{2}\right)=4 w(T) .
\end{array}
$$

For arbitrary nonzero $x, y \in H$ using the above inequality for $x /\|x\|$ and $y /\|y\|$ we get

$$
|(T x, y)+(T y, x)| \leq 2 w(T)\|x\|\|y\|
$$

Plugging $y=T x$ into this:

$$
\left|\|T x\|^{2}+\left(T^{2} x, x\right)\right| \leq 2 w(T)\|x\|\|T x\|
$$

Using this for αT instead of T, where $\alpha \in \mathbb{C}$ with $|\alpha|=1$:

$$
\left|\|T x\|^{2}+\alpha^{2}\left(T^{2} x, x\right)\right| \leq 2 w(T)\|x\|\|T x\|
$$

This holds for all complex α of unit length, therefore

$$
\|T x\|^{2}+\left|\left(T^{2} x, x\right)\right| \leq 2 w(T)\|x\|\|T x\|
$$

Consequently,

$$
\left|\left(T^{2} x, x\right)\right| \leq 2 w(T)\|x\|\|T x\|-\|T x\|^{2}=w(T)^{2}\|x\|^{2}-(w(T)\|x\|-\|T x\|)^{2} \leq w(T)^{2}\|x\|^{2},
$$

which clearly implies $w\left(T^{2}\right) \leq w(T)^{2}$, we are done.
13. We proved in class that $\|S\| \leq 2 w(S)$ for any operator $S \in B(H)$. Plugging $S=T^{2^{k}}$ and using $\left\|T^{2^{k}}\right\|=$ $\|T\|^{2^{k}}$ (see Exercise 6):

$$
\|T\|^{2^{k}}=\left\|T^{2^{k}}\right\| \leq 2 w\left(T^{2^{k}}\right)
$$

However, by the previous exercise:

$$
w\left(T^{2^{k}}\right) \leq w\left(T^{2^{k-1}}\right)^{2} \leq w\left(T^{2^{k-2}}\right)^{4} \leq \cdots \leq w(T)^{2^{k}}
$$

Therefore,

$$
\|T\|^{2^{k}} \leq 2 w(T)^{2^{k}}, \text { thus }\|T\| \leq \sqrt[2^{k}]{2} w(T)
$$

We get $\|T\| \leq w(T)$ in the limit (as $k \rightarrow \infty$). Since the reverse inequality is trivial, we are done.

