Functional Analysis, BSM, Spring 2012

Exercise sheet: spectrum; polar decomposition

Let X be a Banach space and $T \in B(X)$. Recall:

- Spectral mapping theorem: if $p(z)=\sum_{i=0}^{m} \alpha_{i} z^{i}$ is a polynomial, then for $p(T) \stackrel{\text { def }}{=} \sum_{i=0}^{m} \alpha_{i} T^{i} \in B(X)$ we have $\sigma(p(T))=\{p(\lambda): \lambda \in \sigma(T)\}$.
- If T is invertible, then $\sigma\left(T^{-1}\right)=\left\{\lambda^{-1}: \lambda \in \sigma(T)\right\}$.

Definition: we say that λ is an approximate eigenvalue of T if $\lambda I-T$ is not bounded below, that is,

$$
\inf _{\|x\|=1}\|(\lambda I-T) x\|=0
$$

In other words, there exist $x_{n} \in X$ such that $\left\|x_{n}\right\|=1$ for all n and $\left\|T x_{n}-\lambda x_{n}\right\| \rightarrow 0$.
The set of approximate eigenvalues is called the approximate point spectrum and denoted by $\sigma_{a p}(T)$.
Let H be a complex Hilbert space.
Square root lemma: If $A \in B(H)$ is positive, then there exists a unique $B \in B(H)$ such that B is positive and $B^{2}=A$. Furthermore, if $A S=S A$ for some $S \in B(H)$, then $B S=S B$.
Notation: B is denoted by \sqrt{A}.
Definition: $|T| \stackrel{\text { def }}{=} \sqrt{T^{*} T}$.
Polar decomposition: If $T \in B(H)$, then there exists a partial isometry U such that $T=U|T|$.

1. Let $T \in B(H)$ be arbitrary. Prove that

$$
\sigma\left(T^{*}\right)=\{\bar{\lambda}: \lambda \in \sigma(T)\}
$$

2. W11P5. (5 points) Let H be a complex Hilbert space and $T \in B(H)$. Prove the following statements.
a) If T is positive, then $\sigma(T) \subset[0, \infty)$.
b) If T is self-adjoint, then $\sigma(T) \subset \mathbb{R}$.
(Hint: recall that if T is normal, then $\sigma(T)=\sigma_{a p}(T)$.)
3. W11P6. (6 points) Let H be a complex Hilbert space and $T \in B(H)$. Prove that if T is unitary, then $\sigma(T) \subset\{\lambda:|\lambda|=1\}$.
4. Let $T \in B(H)$ be arbitrary. Prove that

$$
\lambda \in \sigma_{p}(T) \Leftrightarrow \operatorname{ran}\left(\bar{\lambda} I-T^{*}\right) \text { is not dense. }
$$

5. Show that the residual spectrum of a normal operator $T \in B(H)$ is always empty.
6. Let $T \in B(H)$ be arbitrary. Prove that if $\lambda \in \sigma(T)$, then either λ is an approximate eigenvalue of T or $\bar{\lambda}$ is an eigenvalue of T^{*}.
7. a) Find the polar decomposition of the right shift operator.
b) Find the polar decomposition of the left shift operator.
8.* W11P7. (12 points) Let H be a complex Hilbert space and $A_{1}, A_{2} \in B(H)$ positive operators. Prove that $A_{1} A_{2}$ is positive if and only if A_{1} and A_{2} commute, that is, $A_{1} A_{2}=A_{2} A_{1}$.
8. Suppose that $A_{n}, A \in B(H)$ are positive operators. Prove that if $\left\|A_{n}-A\right\| \rightarrow 0$, then $\left\|\sqrt{A_{n}}-\sqrt{A}\right\| \rightarrow 0$.
9. Let $T_{n}, T \in B(H)$. Prove that if $\left\|T_{n}-T\right\| \rightarrow 0$, then $\left\|\left|T_{n}\right|-|T|\right\| \rightarrow 0$.
11.* Let H be a Hilbert space and $T \in B(H)$. Prove that the boundary of $\sigma(T)$ is always contained in the approximate point spectrum $\sigma_{a p}(T)$.

Solutions can be found on: www.renyi.hu/~harangi/bsm/

