Functional Analysis, BSM, Spring 2012

Exercise sheet: spectrum; polar decomposition

Let X be a Banach space and $T \in B(X)$. Recall:

- Spectral mapping theorem: if $p(z) = \sum_{i=0}^{m} \alpha_i z^i$ is a polynomial, then for $p(T) \stackrel{\text{def}}{=} \sum_{i=0}^{m} \alpha_i T^i \in B(X)$ we have $\sigma(p(T)) = \{p(\lambda) : \lambda \in \sigma(T)\}.$
- If T is invertible, then $\sigma(T^{-1}) = \{\lambda^{-1} : \lambda \in \sigma(T)\}.$

Definition: we say that λ is an *approximate eigenvalue* of T if $\lambda I - T$ is not bounded below, that is,

$$\inf_{\|x\|=1} \|(\lambda I - T)x\| = 0.$$

In other words, there exist $x_n \in X$ such that $||x_n|| = 1$ for all n and $||Tx_n - \lambda x_n|| \to 0$. The set of approximate eigenvalues is called the *approximate point spectrum* and denoted by $\sigma_{ap}(T)$.

Let H be a complex Hilbert space. Square root lemma: If $A \in B(H)$ is positive, then there exists a unique $B \in B(H)$ such that B is positive and $B^2 = A$. Furthermore, if AS = SA for some $S \in B(H)$, then BS = SB. Notation: B is denoted by \sqrt{A} . Definition: $|T| \stackrel{\text{def}}{=} \sqrt{T^*T}$. Polar decomposition: If $T \in B(H)$, then there exists a partial isometry U such that T = U|T|.

1. Let $T \in B(H)$ be arbitrary. Prove that

$$\sigma(T^*) = \left\{ \overline{\lambda} : \lambda \in \sigma(T) \right\}.$$

2. W11P5. (5 points) Let H be a complex Hilbert space and $T \in B(H)$. Prove the following statements.

- a) If T is positive, then $\sigma(T) \subset [0, \infty)$.
- b) If T is self-adjoint, then $\sigma(T) \subset \mathbb{R}$.

(Hint: recall that if T is normal, then $\sigma(T) = \sigma_{ap}(T)$.)

3. W11P6. (6 points) Let H be a complex Hilbert space and $T \in B(H)$. Prove that if T is unitary, then $\sigma(T) \subset \{\lambda : |\lambda| = 1\}.$

4. Let $T \in B(H)$ be arbitrary. Prove that

$$\lambda \in \sigma_p(T) \Leftrightarrow \operatorname{ran}(\overline{\lambda}I - T^*)$$
 is not dense.

5. Show that the residual spectrum of a normal operator $T \in B(H)$ is always empty.

6. Let $T \in B(H)$ be arbitrary. Prove that if $\lambda \in \sigma(T)$, then either λ is an approximate eigenvalue of T or $\overline{\lambda}$ is an eigenvalue of T^* .

7. a) Find the polar decomposition of the right shift operator.

b) Find the polar decomposition of the left shift operator.

8.* W11P7. (12 points) Let H be a complex Hilbert space and $A_1, A_2 \in B(H)$ positive operators. Prove that A_1A_2 is positive if and only if A_1 and A_2 commute, that is, $A_1A_2 = A_2A_1$.

9. Suppose that $A_n, A \in B(H)$ are positive operators. Prove that if $||A_n - A|| \to 0$, then $||\sqrt{A_n} - \sqrt{A}|| \to 0$. **10.** Let $T_n, T \in B(H)$. Prove that if $||T_n - T|| \to 0$, then $|||T_n| - |T||| \to 0$.

11.* Let *H* be a Hilbert space and $T \in B(H)$. Prove that the boundary of $\sigma(T)$ is always contained in the approximate point spectrum $\sigma_{ap}(T)$.

Solutions can be found on: www.renyi.hu/~harangi/bsm/