Functional Analysis, BSM, Spring 2012

Exercise sheet: spectrum; polar decomposition

Solutions

1. By definition, $\lambda \in \sigma(T)$ if and only if $\lambda I-T$ is invertible. We have seen that if S is invertible, then so is S^{*}. Since $\left(S^{*}\right)^{*}=S$, this means that S is invertible if and only if S^{*} is invertible. Using $(\lambda I-T)^{*}=\bar{\lambda} I-T^{*}$ the statement follows.
2. a) In a complex Hilbert space every positive operator is self-adjoint, and hence normal. Thus $\sigma(T)=\sigma_{a p}(T)$. Suppose that λ is an approximate eigenvalue of T, that is, there exist $x_{n} \in X$ such that $\left\|x_{n}\right\|=1$ for all n and $\left\|T x_{n}-\lambda x_{n}\right\| \rightarrow 0$. It follows that

$$
\left|\left(T x_{n}-\lambda x_{n}, x_{n}\right)\right| \leq\left\|T x_{n}-\lambda x_{n}\right\|\left\|x_{n}\right\| \rightarrow 0
$$

Since

$$
\left(T x_{n}-\lambda x_{n}, x_{n}\right)=\left(T x_{n}, x_{n}\right)-\left(\lambda x_{n}, x_{n}\right)=\left(T x_{n}, x_{n}\right)-\lambda,
$$

we get that $\left(T x_{n}, x_{n}\right) \rightarrow \lambda$. Since T is positive, $\left(T x_{n}, x_{n}\right)$ is a nonnegative real number for all n, thus so is λ. b) The same proof yields that every approximate eigenvalue of a self-adjoint operator T is real. (We need to use that if T is self-adjoint, then $(T x, x)$ is real for any $x \in H$.)
3. If T is unitary, then so is T^{*}. In particular, $\|T\|=\left\|T^{*}\right\|=1$. Therefore both $\sigma(T)$ and $\sigma\left(T^{*}\right)$ are contained in the closed unit disk $\{\lambda:|\lambda| \leq 1\}$.

On the other hand, if T is unitary, then it is invertible and $T^{-1}=T^{*}$. Now suppose that there exists $\lambda \in \sigma(T)$ with $|\lambda|<1$. Then $\lambda^{-1} \in \sigma\left(T^{-1}\right)=\sigma\left(T^{*}\right)$. Since $\left|\lambda^{-1}\right|>1$, this contradicts that $\sigma\left(T^{*}\right)$ is contained in the closed unit disk.
4. Recall that $(\operatorname{ker} S)^{\perp}=\operatorname{cl}\left(\operatorname{ran} S^{*}\right)$. Using this for $S=\lambda I-T$:

$$
\lambda \in \sigma_{p}(T) \Leftrightarrow \operatorname{ker}(\lambda I-T) \neq\{0\} \Leftrightarrow \operatorname{cl}\left(\operatorname{ran}(\lambda I-T)^{*}\right) \neq H \Leftrightarrow \operatorname{ran}\left(\bar{\lambda} I-T^{*}\right) \text { is not dense. }
$$

5. Recall that

$$
\sigma_{r}(T)=\{\lambda: \operatorname{ker}(\lambda I-T)=\{0\} \text { and } \operatorname{ran}(\lambda I-T) \text { is not dense }\}
$$

If T is normal, then $\operatorname{ker} T=\operatorname{ker} T^{*}=(\operatorname{ran} T)^{\perp}$. It follows that for a normal operator the kernel is trivial if and only if the range is dense. Since $\lambda I-T$ is normal, we conclude that $\sigma_{r}(T)=\emptyset$.
6. Recall that S is invertible if and only if S is bounded below and $\operatorname{ran} S$ is dense. If $\lambda \in \sigma(T)$, then $\lambda I-T$ is not invertible, so either $\lambda I-T$ is not bounded below (i.e., λ is an approximate eigenvalue of T), or $\operatorname{cl}(\operatorname{ran}(\lambda I-T)) \neq H$. Since $\operatorname{cl}(\operatorname{ran}(\lambda I-T))=\left(\operatorname{ker}(\lambda I-T)^{*}\right)^{\perp}=\left(\operatorname{ker}\left(\bar{\lambda} I-T^{*}\right)\right)^{\perp}$, the latter means that $\operatorname{ker}\left(\bar{\lambda} I-T^{*}\right) \neq\{0\}$ (i.e., $\bar{\lambda}$ is an eigenvalue of T^{*}).
7. a) If R is the right shift operator, then $R^{*} R=I$, so $|R|=I$ and we must have $U=R$ in the polar decomposition.
b) If L is the left shift operator, then

$$
L^{*} L:\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right) \mapsto\left(0, \alpha_{2}, \alpha_{3}, \ldots\right)
$$

The square root of this operator is itself. This means that we can choose U to be the left shift.
8.* In a complex Hilbert space every positive operator is self-adjoint. So if $A_{1} A_{2}$ is positive, then $A_{1} A_{2}=$ $\left(A_{1} A_{2}\right)^{*}=A_{2}^{*} A_{1}^{*}=A_{2} A_{1}$. For the converse, suppose that A_{1} and A_{2} commute. Let $B_{1}=\sqrt{A_{1}} ; B_{1}$ is a positive operator for which $A_{1}=B_{1}^{2}$. We also know from the square root lemma that B_{1} commutes with A_{2}. Therefore

$$
\left(A_{1} A_{2} x, x\right)=\left(B_{1} B_{1} A_{2} x, x\right)=\left(B_{1} A_{2} x, B_{1}^{*} x\right)=\left(A_{2} B_{1} x, B_{1} x\right) \geq 0
$$

9. We may assume that $\|A\| \leq 1$ and $\left\|A_{n}\right\| \leq 1$ for all n. Then with the notations of the proof of the square root lemma:

$$
\sqrt{A}=I-\sum_{k=1}^{\infty} c_{k}(I-A)^{k} \text { and } \sqrt{A_{n}}=I-\sum_{k=1}^{\infty} c_{k}\left(I-A_{n}\right)^{k} \text { for all } n
$$

Recall that c_{k} are positive real numbers with $\sum_{k=1}^{\infty} c_{k}=1$. Therefore

$$
\left\|\sqrt{A}-\sqrt{A_{n}}\right\| \leq \sum_{k=1}^{\infty} c_{k}\left\|(I-A)^{k}-\left(I-A_{n}\right)^{k}\right\|
$$

Now let $\varepsilon>0$ be arbitrary. We choose K such that

$$
\sum_{k=K+1}^{\infty} c_{k}<\varepsilon / 4
$$

It is easy to see that for any fixed $k,\left\|(I-A)^{k}-\left(I-A_{n}\right)^{k}\right\| \rightarrow 0$ as $n \rightarrow \infty$. So there exists N such that $\left\|(I-A)^{k}-\left(I-A_{n}\right)^{k}\right\| \leq \varepsilon /(2 K)$ for all $1 \leq k \leq K$ and $n>N$. Since $\left\|(I-A)^{k}-\left(I-A_{n}\right)^{k}\right\| \leq 2$,

$$
\left\|\sqrt{A}-\sqrt{A_{n}}\right\| \leq \sum_{k=1}^{K}\left\|(I-A)^{k}-\left(I-A_{n}\right)^{k}\right\|+\sum_{k=K+1}^{\infty} 2 c_{k}<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

for any $n>N$.
10. In view of the previous exercise, it suffices to show that $\left\|T_{n}^{*} T_{n}-T^{*} T\right\| \rightarrow 0$. We know that

$$
\left\|T_{n}^{*}-T^{*}\right\|=\left\|\left(T_{n}-T\right)^{*}\right\|=\left\|T_{n}-T\right\| \rightarrow 0
$$

So it is enough to prove that if $\left\|A_{n}-A\right\| \rightarrow 0$ and $\left\|B_{n}-B\right\| \rightarrow 0$, then $\left\|A_{n} B_{n}-A B\right\| \rightarrow 0$, but this is clear, since

$$
\begin{array}{r}
\left\|A_{n} B_{n}-A B\right\| \leq\left\|A_{n} B_{n}-A B_{n}\right\|+\left\|A B_{n}-A B\right\|=\left\|\left(A_{n}-A\right) B_{n}\right\|+\left\|A\left(B_{n}-B\right)\right\| \leq \\
\left\|A_{n}-A\right\|\left\|B_{n}\right\|+\|A\|\left\|B_{n}-B\right\| \rightarrow 0
\end{array}
$$

11.* The statement will easily follow from the following lemma.

Lemma: Let $A_{n}, A \in B(H)$. Suppose that $A_{n} \in B(H)$ is invertible for each n and $\left\|A_{n}-A\right\| \rightarrow 0$ as $n \rightarrow \infty$. If A is not invertible, then A is not bounded below.
Proof of the lemma: Assume that A is bounded below, but not invertible. It means that ran A cannot be dense, thus $(\operatorname{ran} A)^{\perp}$ is not trivial: there exists $x \neq 0$ such that x is orthogonal to ran A. We know that A_{n} is surjective for each n, so there exists $x_{n} \neq 0$ such that $A_{n} x_{n}=x$. Then

$$
\left(A-A_{n}\right) x_{n}=A x_{n}-A_{n} x_{n}=A x_{n}-x
$$

Since $A x_{n}$ is in ran A, it is orthogonal to x, so

$$
\left\|\left(A-A_{n}\right) x_{n}\right\|^{2}=\left\|A x_{n}\right\|^{2}+\|x\|^{2} \geq\left\|A x_{n}\right\|^{2}
$$

Therefore

$$
\frac{\left\|A x_{n}\right\|}{\left\|x_{n}\right\|} \leq \frac{\left\|\left(A-A_{n}\right) x_{n}\right\|}{\left\|x_{n}\right\|} \leq\left\|A-A_{n}\right\| \rightarrow 0
$$

as $n \rightarrow \infty$, which contradicts that A is bounded below.
Now let λ be an arbitrary element of the boundary of the spectrum. Since the spectrum is closed, this means that $\lambda \in \sigma(T)$, but there exist $\lambda_{n} \notin \sigma(T)$ such that $\lambda_{n} \rightarrow \lambda$. So we can use the lemma with $A_{n}=\lambda_{n} I-T$ and $A=\lambda I-T$. We get that $\lambda I-T$ is not bounded below, that is, λ is an approximate eigenvalue. This is what we wanted to prove.

