Functional Analysis, BSM, Spring 2012

Final exam, May 21

Solutions

1. We have $\operatorname{ker}(S T) \supset \operatorname{ker} T$ for any $S, T \in B(H)$. Therefore $\operatorname{ker}\left(T^{*} T\right) \supset \operatorname{ker} T$. So it remains to show that $\operatorname{ker}\left(T^{*} T\right) \subset \operatorname{ker} T$. Let $x \in \operatorname{ker}\left(T^{*} T\right)$, that is, $T^{*} T x=0$. Then

$$
\|T x\|^{2}=(T x, T x)=\left(x, T^{*} T x\right)=(x, 0)=0
$$

Thus $x \in \operatorname{ker} T$; we are done.
2. We need to show that the complement of $\sigma_{a p}(T)$ is open. The complement consists of those complex numbers λ for which

$$
\inf _{\|x\|=1}\|(\lambda I-T) x\|>0
$$

Suppose that $\lambda \notin \sigma_{a p}(T)$ and let

$$
\delta \stackrel{\text { def }}{=} \inf _{\|x\|=1}\|(\lambda I-T) x\|>0
$$

It suffices to show that if $\left|\lambda^{\prime}-\lambda\right|<\delta$, then $\lambda^{\prime} \notin \sigma_{a p}(T)$. Since

$$
\left\|\left(\lambda^{\prime} I-T\right) x\right\| \geq\|(\lambda I-T) x\|-\left\|\left(\lambda^{\prime}-\lambda\right) x\right\|
$$

it follows that

$$
\inf _{\|x\|=1}\left\|\left(\lambda^{\prime} I-T\right) x\right\| \geq \inf _{\|x\|=1}\|(\lambda I-T) x\|-\left|\lambda^{\prime}-\lambda\right|=\delta-\left|\lambda^{\prime}-\lambda\right|>0
$$

thus $\lambda^{\prime} \notin \sigma_{a p}(T)$ as claimed.
3. Let $Y=\operatorname{ran} T$ and let $v \in Y \backslash\{0\}$. Since Y is one-dimensional, $Y=\{\alpha v: \alpha \in \mathbb{C}\}$. Consider the following bounded linear functional Λ on Y :

$$
\Lambda(\alpha v)=\alpha
$$

Then ΛT is a bounded linear functional on H. Riesz representation theorem tells us that there exists $u \in H$ such that

$$
\Lambda T x=(x, u) \text { for all } x \in H
$$

It follows that $T x=(x, u) v$. It remains to show that $\|T\|=\|u\| \cdot\|v\|$. Since

$$
\|T x\|=\|(x, u) v\|=|(x, u)| \cdot\|v\| \leq\|x\| \cdot\|u\| \cdot\|v\|
$$

we get that $\|T\| \leq\|u\| \cdot\|v\|$. On the other hand, for $x=u /\|u\|$ we have $\|x\|=1$ and $\|T x\|=\|u\| \cdot\|v\|$.
4. The assumption is equivalent to $y \in \operatorname{cl}\left(\operatorname{ran} T^{*}\right)$, while the conclusion is equivalent to $y \in \operatorname{cl}\left(\operatorname{ran}\left(T^{*} T\right)\right)$. However, using $\operatorname{ker}\left(T^{*} T\right)=\operatorname{ker} T$ (see Problem 1) and $\operatorname{cl}\left(\operatorname{ran} S^{*}\right)=(\operatorname{ker} S)^{\perp}$ for $S=T$ and $S=T^{*} T$ we get

$$
\operatorname{cl}\left(\operatorname{ran} T^{*}\right)=(\operatorname{ker} T)^{\perp}=\left(\operatorname{ker}\left(T^{*} T\right)\right)^{\perp}=\operatorname{cl}\left(\operatorname{ran}\left(T^{*} T\right)\right)
$$

5. Since $T \in B(H)$ is self-adjoint, we have $\sigma(T) \subset \mathbb{R}$, that is, $\alpha I-T$ is invertible if $\operatorname{Im} \alpha \neq 0$. Using this for $-\alpha$ we get that $-\alpha I-T$ is invertible, thus so is $\alpha I+T$.

We claim that $(\alpha I+T)^{-1}$ commutes with $\beta I+T$ for any $\beta \in \mathbb{C}$. This is clear, because it commutes with both $\alpha I+T$ and $(\beta-\alpha) I$, so it must commute with their sum

$$
(\alpha I+T)+(\beta-\alpha) I=\beta I+T
$$

It follows that the operators $\bar{\alpha} I+T$ and $(\alpha I+T)^{-1}$ commute. We need to show that $U U^{*}=U^{*} U=I$. Using that $T^{*}=T$:

$$
\begin{array}{r}
U U^{*}=(\bar{\alpha} I+T)(\alpha I+T)^{-1}\left((\alpha I+T)^{-1}\right)^{*}(\bar{\alpha} I+T)^{*}=(\alpha I+T)^{-1}(\bar{\alpha} I+T)\left((\alpha I+T)^{*}\right)^{-1}(\alpha I+T)= \\
(\alpha I+T)^{-1}(\bar{\alpha} I+T)(\bar{\alpha} I+T)^{-1}(\alpha I+T)=(\alpha I+T)^{-1} I(\alpha I+T)=I
\end{array}
$$

Proving $U^{*} U=I$ is similar.
6. Let $B_{n}(0)$ denote the open ball in X with radius n and center 0 . Then

$$
\operatorname{ran} T=\bigcup_{n=1}^{\infty} T\left(B_{n}(0)\right)=\bigcup_{n=1}^{\infty} n \cdot T\left(B_{1}(0)\right)
$$

Since T is compact, $T\left(B_{1}(0)\right)$ is totally bounded, so it has a finite ε-lattice S_{ε} for any $\varepsilon>0$. Let

$$
M=\bigcup_{n=1}^{\infty} n \cdot S_{1 / n^{2}}
$$

Since M is countable, it is enough to show that M is dense in $\operatorname{ran} T$. Let $y \in \operatorname{ran} T$ be arbitrary. Then $y \in T\left(B_{n}(0)\right)=n \cdot T\left(B_{1}(0)\right)$ if n is large enough. Therefore $y / n \in T\left(B_{1}(0)\right)$. It follows that there exists $s_{n} \in S_{1 / n^{2}}$ such that

$$
\left\|y / n-s_{n}\right\|<\frac{1}{n^{2}}
$$

thus

$$
\left\|y-n \cdot s_{n}\right\|<\frac{1}{n}
$$

Since $n \cdot s_{n} \in M$ for all n, we get that $y \in \operatorname{cl} M$.

Extra problems:

7. We prove by contradction; we assume that $\exists T \in B\left(\ell_{2}\right)$ such that $T^{2}=L$. Let Y be the one-dimensional subspace spanned by $(1,0,0, \ldots)$. Since $\operatorname{ker} T \subset \operatorname{ker} T^{2}=\operatorname{ker} L=Y$, we either have $\operatorname{ker} T=\{0\}$ or $\operatorname{ker} T=Y$. However, $\operatorname{ker} T=\{0\}$ would imply $\operatorname{ker} L=\operatorname{ker}\left(T^{2}\right)=\{0\}$. So only the second case is possible: $\operatorname{ker} T=Y$. Now let $x=(0,1,0,0, \ldots)$. Then

$$
L T x=T^{3} x=T L x=T(1,0,0, \ldots)=0 .
$$

Therefore $T x \in \operatorname{ker} L=Y=\operatorname{ker} T$, thus $T T x=0$. However, $T T x=L x=(1,0,0, \ldots)$, contradiction.
If the right shift R had some square root T, then $L=R^{*}=\left(T^{2}\right)^{*}=\left(T^{*}\right)^{2}$, so L would have a square root, too.
8. Since

$$
(T x, y)=(x, u)(v, y)=(x, \overline{(v, y)} u)=(x,(y, v) u)
$$

it follows that $T^{*} y=(y, v) u$.
We claim that the spectrum consists of 0 and (v, u). Since T has finite rank, it is compact. So every nonzero element λ of the spectrum is an eigenvalue. So there exists $x \in H$ such that $T x=\lambda x$. Since $T x$ is in the range $\operatorname{ran} T$, so is x. Therefore we can assume that $x=v$ and $\lambda=(v, u)$ follows.
9. Let P_{1} be the orthogonal projection to $\operatorname{ker}(I-T)$ and P_{2} the orthogonal projection to $\operatorname{ker}(-I-T)=$ $\operatorname{ker}(I+T)$. We aim to show that $T=P_{1}-P_{2}$.

If T is self-adjoint $\left(T=T^{*}\right)$ and unitary $\left(T T^{*}=T^{*} T=I\right)$, then $T^{2}=I$, thus $0=I-T^{2}=(I-T)(I+T)$. It follows that $\operatorname{ker}(I-T) \supset \operatorname{ran}(I+T)$. Since $\operatorname{ker}(I-T)$ is closed, we even have

$$
\operatorname{ker}(I-T) \supset \operatorname{cl}(\operatorname{ran}(I+T))=\left(\operatorname{ker}\left(I+T^{*}\right)\right)^{\perp}=(\operatorname{ker}(I+T))^{\perp}
$$

We also know that $\operatorname{ker}(I-T) \cap \operatorname{ker}(I+T)=\{0\}$, therefore $\operatorname{ker}(I-T)$ and $\operatorname{ker}(I+T)$ must be orthogonal complements. So for any $x \in H$ we have $x=P_{1} x+P_{2} x$ and consequently $T x=T P_{1} x+T P_{2} x=P_{1} x-P_{2} x$ as claimed.
10. We need to show that for any $y \in H$ and $\varepsilon>0$ there exists a polynomial q such that

$$
\left\|y-q\left(T^{*}\right) x\right\|<\varepsilon .
$$

Since x is cyclic for T, it suffices to prove this when $y=T^{n} x$ for some nonnegative integer n. So for any n and $\varepsilon>0$ we need to find a polynomial q such that

$$
\left\|T^{n} x-q\left(T^{*}\right) x\right\|<\varepsilon
$$

However, $T^{n}-q\left(T^{*}\right)$ is normal, so

$$
\left\|\left(T^{n}-q\left(T^{*}\right)\right) x\right\|=\left\|\left(T^{n}-q\left(T^{*}\right)\right)^{*} x\right\|=\left\|\left(\left(T^{*}\right)^{n}-\bar{q}(T)\right) x\right\|=\left\|\left(T^{*}\right)^{n} x-\bar{q}(T) x\right\|
$$

which can be arbitaririly small, because x is cyclic for T.

