Functional Analysis, BSM, Spring 2012 Final exam, May 21 Solutions

1. We have $\ker(ST) \supset \ker T$ for any $S, T \in B(H)$. Therefore $\ker(T^*T) \supset \ker T$. So it remains to show that $\ker(T^*T) \subset \ker T$. Let $x \in \ker(T^*T)$, that is, $T^*Tx = 0$. Then

$$||Tx||^2 = (Tx, Tx) = (x, T^*Tx) = (x, 0) = 0.$$

Thus $x \in \ker T$; we are done.

2. We need to show that the complement of $\sigma_{ap}(T)$ is open. The complement consists of those complex numbers λ for which

$$\inf_{\|x\|=1} \|(\lambda I - T)x\| > 0.$$

Suppose that $\lambda \notin \sigma_{ap}(T)$ and let

$$\delta \stackrel{\text{def}}{=} \inf_{\|x\|=1} \|(\lambda I - T)x\| > 0.$$

It suffices to show that if $|\lambda' - \lambda| < \delta$, then $\lambda' \notin \sigma_{ap}(T)$. Since

$$|(\lambda'I - T)x|| \ge ||(\lambda I - T)x|| - ||(\lambda' - \lambda)x||,$$

it follows that

$$\inf_{\|x\|=1} \|(\lambda' I - T)x\| \ge \inf_{\|x\|=1} \|(\lambda I - T)x\| - |\lambda' - \lambda| = \delta - |\lambda' - \lambda| > 0,$$

thus $\lambda' \notin \sigma_{ap}(T)$ as claimed.

3. Let $Y = \operatorname{ran} T$ and let $v \in Y \setminus \{0\}$. Since Y is one-dimensional, $Y = \{\alpha v : \alpha \in \mathbb{C}\}$. Consider the following bounded linear functional Λ on Y:

$$\Lambda(\alpha v) = \alpha.$$

Then ΛT is a bounded linear functional on H. Riesz representation theorem tells us that there exists $u \in H$ such that

$$\Lambda Tx = (x, u) \text{ for all } x \in H$$

It follows that Tx = (x, u)v. It remains to show that $||T|| = ||u|| \cdot ||v||$. Since

$$||Tx|| = ||(x, u)v|| = |(x, u)| \cdot ||v|| \le ||x|| \cdot ||u|| \cdot ||v||,$$

we get that $||T|| \leq ||u|| \cdot ||v||$. On the other hand, for x = u/||u|| we have ||x|| = 1 and $||Tx|| = ||u|| \cdot ||v||$. **4.** The assumption is equivalent to $y \in cl(ran T^*)$, while the conclusion is equivalent to $y \in cl(ran(T^*T))$. However, using ker $(T^*T) = \ker T$ (see Problem 1) and $cl(ran S^*) = (\ker S)^{\perp}$ for S = T and $S = T^*T$ we get

$$cl(ran T^*) = (ker T)^{\perp} = (ker(T^*T))^{\perp} = cl(ran(T^*T))$$

5. Since $T \in B(H)$ is self-adjoint, we have $\sigma(T) \subset \mathbb{R}$, that is, $\alpha I - T$ is invertible if $\operatorname{Im} \alpha \neq 0$. Using this for $-\alpha$ we get that $-\alpha I - T$ is invertible, thus so is $\alpha I + T$.

We claim that $(\alpha I + T)^{-1}$ commutes with $\beta I + T$ for any $\beta \in \mathbb{C}$. This is clear, because it commutes with both $\alpha I + T$ and $(\beta - \alpha)I$, so it must commute with their sum

$$(\alpha I + T) + (\beta - \alpha)I = \beta I + T$$

It follows that the operators $\overline{\alpha}I + T$ and $(\alpha I + T)^{-1}$ commute. We need to show that $UU^* = U^*U = I$. Using that $T^* = T$:

$$UU^* = (\overline{\alpha}I + T)(\alpha I + T)^{-1} \left((\alpha I + T)^{-1} \right)^* (\overline{\alpha}I + T)^* = (\alpha I + T)^{-1} (\overline{\alpha}I + T) \left((\alpha I + T)^* \right)^{-1} (\alpha I + T) = (\alpha I + T)^{-1} (\alpha I + T)^{-1} (\overline{\alpha}I + T)^{-1} (\alpha I + T) = I.$$

Proving $U^*U = I$ is similar.

6. Let $B_n(0)$ denote the open ball in X with radius n and center 0. Then

$$\operatorname{ran} T = \bigcup_{n=1}^{\infty} T\left(B_n(0)\right) = \bigcup_{n=1}^{\infty} n \cdot T\left(B_1(0)\right).$$

Since T is compact, $T(B_1(0))$ is totally bounded, so it has a finite ε -lattice S_{ε} for any $\varepsilon > 0$. Let

$$M = \bigcup_{n=1}^{\infty} n \cdot S_{1/n^2}$$

Since M is countable, it is enough to show that M is dense in ran T. Let $y \in \operatorname{ran} T$ be arbitrary. Then $y \in T(B_n(0)) = n \cdot T(B_1(0))$ if n is large enough. Therefore $y/n \in T(B_1(0))$. It follows that there exists $s_n \in S_{1/n^2}$ such that

1

thus

$$\|y/n - s_n\| < \frac{1}{n^2},$$
$$\|y - n \cdot s_n\| < \frac{1}{n}.$$

Since $n \cdot s_n \in M$ for all n, we get that $y \in \operatorname{cl} M$.

Extra problems:

7. We prove by contradiction; we assume that $\exists T \in B(\ell_2)$ such that $T^2 = L$. Let Y be the one-dimensional subspace spanned by $(1, 0, 0, \ldots)$. Since ker $T \subset \ker T^2 = \ker L = Y$, we either have ker $T = \{0\}$ or ker T = Y. However, ker $T = \{0\}$ would imply ker $L = \ker(T^2) = \{0\}$. So only the second case is possible: ker T = Y. Now let $x = (0, 1, 0, 0, \ldots)$. Then

$$LTx = T^{3}x = TLx = T(1, 0, 0, ...) = 0$$

Therefore $Tx \in \ker L = Y = \ker T$, thus TTx = 0. However, TTx = Lx = (1, 0, 0, ...), contradiction.

If the right shift R had some square root T, then $L = R^* = (T^2)^* = (T^*)^2$, so L would have a square root, too.

8. Since

$$(Tx,y) = (x,u)(v,y) = \left(x,\overline{(v,y)}u\right) = \left(x,(y,v)u\right),$$

it follows that $T^*y = (y, v)u$.

We claim that the spectrum consists of 0 and (v, u). Since T has finite rank, it is compact. So every nonzero element λ of the spectrum is an eigenvalue. So there exists $x \in H$ such that $Tx = \lambda x$. Since Tx is in the range ran T, so is x. Therefore we can assume that x = v and $\lambda = (v, u)$ follows.

9. Let P_1 be the orthogonal projection to ker(I - T) and P_2 the orthogonal projection to ker(-I - T) =ker(I + T). We aim to show that $T = P_1 - P_2$.

If T is self-adjoint $(T = T^*)$ and unitary $(TT^* = T^*T = I)$, then $T^2 = I$, thus $0 = I - T^2 = (I - T)(I + T)$. It follows that $\ker(I - T) \supset \operatorname{ran}(I + T)$. Since $\ker(I - T)$ is closed, we even have

$$\ker(I-T) \supset \operatorname{cl}(\operatorname{ran}(I+T)) = (\ker(I+T^*))^{\perp} = (\ker(I+T))^{\perp}$$

We also know that $\ker(I - T) \cap \ker(I + T) = \{0\}$, therefore $\ker(I - T)$ and $\ker(I + T)$ must be orthogonal complements. So for any $x \in H$ we have $x = P_1x + P_2x$ and consequently $Tx = TP_1x + TP_2x = P_1x - P_2x$ as claimed.

10. We need to show that for any $y \in H$ and $\varepsilon > 0$ there exists a polynomial q such that

$$\|y - q(T^*)x\| < \varepsilon.$$

Since x is cyclic for T, it suffices to prove this when $y = T^n x$ for some nonnegative integer n. So for any n and $\varepsilon > 0$ we need to find a polynomial q such that

$$||T^n x - q(T^*)x|| < \varepsilon.$$

However, $T^n - q(T^*)$ is normal, so

$$\| (T^n - q(T^*)) x \| = \| (T^n - q(T^*))^* x \| = \| ((T^*)^n - \overline{q}(T)) x \| = \| (T^*)^n x - \overline{q}(T) x \|,$$

which can be arbitaririly small, because x is cyclic for T.