Functional Analysis, BSM, Spring 2012

Midterm exam, March 26

Solutions

1. Let $x=\left(\alpha_{1}, \alpha_{2}, \ldots\right) ; \alpha_{i} \in \mathbb{C}$. Since

$$
\left|\frac{\alpha_{1}+\cdots+\alpha_{n}}{n}\right| \leq \frac{\left|\alpha_{1}\right|+\cdots+\left|\alpha_{n}\right|}{n} \leq \frac{n \cdot\|x\|_{\infty}}{n}=\|x\|_{\infty},
$$

it follows that $\|T x\|_{\infty} \leq\|x\|_{\infty}$, thus $\|T\| \leq 1$. For $x=(1,1,1, \ldots)$ we have $T x=x$, so $\|T\|=1$.
We claim that T is injective. Suppose that $T x=0$. Clearly, $\alpha_{1}=0$. Then $\left(\alpha_{1}+\alpha_{2}\right) / 2=\alpha_{2} / 2=0$. Then $\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right) / 3=\alpha_{3} / 3=0$. We get by induction that $\alpha_{n}=0$ for all n.

We claim that $y=(1,0,1,0,1,0, \ldots) \notin \operatorname{ran} T$, thus T is not surjective. Assume that there exists $x \in \ell_{\infty}$ such that $T x=y$. Then $\alpha_{1}=1, \alpha_{2}=-1, \alpha_{3}=3, \alpha_{4}=-3, \alpha_{5}=5, \alpha_{6}=-5$, and so on. By induction: $\alpha_{2 k+1}=2 k+1$ and $\alpha_{2 k+2}=-(2 k+1)$, which contradicts $x \in \ell_{\infty}$.
2. Suppose that $x=\left(\alpha_{1}, \alpha_{2}, \ldots\right) \in \ell_{p}$. It means that

$$
\sum_{i=1}^{\infty}\left|\alpha_{i}\right|^{p}<\infty .
$$

This implies that $\left|\alpha_{i}\right|^{p} \rightarrow 0$, so there exists N such that $\left|\alpha_{i}\right| \leq 1$ for $i>N$. Thus for $i>N$ we have $\left|\alpha_{i}\right|^{q} \leq\left|\alpha_{i}\right|^{p}$. It follows that

$$
\sum_{i=1}^{\infty}\left|\alpha_{i}\right|^{q}=\sum_{i=1}^{N}\left|\alpha_{i}\right|^{q}+\sum_{i=N+1}^{\infty}\left|\alpha_{i}\right|^{q} \leq \sum_{i=1}^{N}\left|\alpha_{i}\right|^{q}+\sum_{i=N+1}^{\infty}\left|\alpha_{i}\right|^{p} \leq \sum_{i=1}^{N}\left|\alpha_{i}\right|^{q}+\sum_{i=1}^{\infty}\left|\alpha_{i}\right|^{p} .
$$

The first term on the right-hand side is a finite sum, so it is finite. The second term is fintie by our assumption $x \in \ell_{p}$. We conclude that $x \in \ell_{q}$. Therefore $\ell_{p} \subseteq \ell_{q}$. It remains to show that there exists $x \in \ell_{q} \backslash \ell_{p}$. Let

$$
\alpha_{n}=\frac{1}{n^{1 / p}} .
$$

Then

$$
\sum_{i=1}^{\infty}\left|\alpha_{i}\right|^{p}=\sum_{i=1}^{\infty} \frac{1}{n}=\infty
$$

while

$$
\sum_{i=1}^{\infty}\left|\alpha_{i}\right|^{q}=\sum_{i=1}^{\infty} \frac{1}{n^{q / p}}<\infty
$$

since $q / p>1$.
3. Let $\left(x_{k}\right)_{k=1}^{\infty}$ be an arbitrary sequence in X. We know that X can be covered by finitely many 1-balls. One of these balls must contain an infinite subsequence of $\left(x_{k}\right)_{k=1}^{\infty}:\left(x_{k}^{1}\right)_{k=1}^{\infty}$. The space X can also be covered by finitely many $1 / 2$-balls. One of these balls must contain an infinite subsequence of $\left(x_{k}^{1}\right)_{k=1}^{\infty}:\left(x_{k}^{2}\right)_{k=1}^{\infty}$. If we continue this process, then at step n we get a subsequence $\left(x_{k}^{n}\right)_{k=1}^{\infty}$ with the property that all the elements of the sequence lie in the same ball of radius $1 / n$. Now let $a_{k}=x_{k}^{k}$. Then $\left(a_{k}\right)$ is a subsequence of $\left(x_{k}\right)$ and it is Cauchy, because if $m>n$, then both a_{n} and a_{m} are elements of the sequence $\left(x_{k}^{n}\right)_{k=1}^{\infty}$, which yields that they are contained by the same $1 / n$-ball, thus $d\left(a_{n}, a_{m}\right)<2 / n$.

Second solution: Consider the completion (\tilde{X}, \tilde{d}) of the metric space (X, d). Since X is totally bounded and dense in \widetilde{X}, it easily follows that \widetilde{X} is also totally bounded. Therefore \widetilde{X} is compact (complete and totally bounded). Now let $\left(x_{k}\right)$ be any sequence in X, which can also be viewed as a sequence in \tilde{X}. Since \tilde{X} is compact, $\left(x_{k}\right)$ has a subsequence that is convergent in \widetilde{X}. In particular, this subsequence is Cauchy.
4. Assume that there exists $0 \neq x \in X$ such that

$$
x \in \bigcap_{\Lambda \in S} \operatorname{ker} \Lambda
$$

It means that $\Lambda x=0$ for any $\Lambda \in S$. However, S is a basis of X^{*}, so any $\Lambda \in X^{*}$ can be expressed as the finite linear combination of functionals in S. It follows that $\Lambda x=0$ for any $\Lambda \in X^{*}$, which is a contradiction, since we proved (using the Hahn-Banach theorem) that for any $x \in X$ there exists $\Lambda \in X^{*}$ with $\Lambda x=\|x\|$.
5. Every one-point set $\{x\}$ of a metric space is closed. (We need to show that its complement $X \backslash\{x\}$ is open. This is clear, because for any $y \neq x$ we have $B_{r}(y) \subset X \backslash\{x\}$ for $r=d(x, y)>0$.)

Assume for the sake of contradiction that X is countable. Then

$$
X=\bigcup_{x \in X}\{x\}
$$

is a finite or countably infinite union of closed sets. Since X is complete, Baire category theorem tells us that one of the sets $\{x\}$ contains an open ball. Consequently, there exist $x \in X$ and $r>0$ such that $B_{r}(x)=\{x\}$, that is, x is an isolated point, contradiction.
6. We know that

$$
((\lambda I-T) f)(x)=(\lambda-x) f(x)
$$

We claim that $\lambda I-T$ is injective for any $\lambda \in \mathbb{R}$. Suppose that $f \in \operatorname{ker}(\lambda I-T)$. Then $f(x)=0$ for any $x \in[0,1] \backslash\{\lambda\}$. Since f is continuous, it follows that $f(x)=0$ for any $x \in[0,1]$. This means that the point spectrum $\sigma_{p}(T)$ is empty.

If $\lambda \notin[0,1]$, then $\lambda I-T$ is surjective. For $g \in C[0,1]$ let $f(x)=g(x) /(\lambda-x)$. Clearly, f is continuous and $(\lambda I-T) f=g$.

If $\lambda \in[0,1]$, then $\operatorname{ran}(\lambda I-T)$ is not even dense. For any $f \in C[0,1]$ we have $((\lambda I-T) f)(\lambda)=0$. Thus

$$
\operatorname{ran}(\lambda I-T) \subset\{g \in C[0,1]: g(\lambda)=0\} .
$$

The set on the right-hand side is a closed proper subspace of $C[0,1]$, so it contains even the closure of the range.

It follows that $\sigma_{r}(T)=\sigma(T)=[0,1]$.

Extra problems:

7. It is easy to see that

$$
\sigma_{p}(T)=\{1,1 / 2,1 / 3,1 / 4, \ldots\}
$$

It is not easy to see that

$$
\sigma(T)=\{\lambda \in \mathbb{C}:|\lambda-1 / 2| \leq 1 / 2\}
$$

I am not sure what the residual spectrum is:

$$
\sigma_{r}(T) \supset\{\lambda \in \mathbb{C}:|\lambda-1 / 2|<1 / 2\} \backslash\{1,1 / 2,1 / 3,1 / 4, \ldots\}
$$

but I don't know which points of the boundary belong to $\sigma_{r}(T)$.
Since the spectrum is uncountable, T is certainly not compact.
8. Assume for the sake of contradiction that both S and T are bounded. If we replace S and T by αS and $\alpha^{-1} T$, then the condition $S T-T S=I$ still holds. So we may assume that $\|T\|=1$. It is easy to see by induction that $S T^{n+1}-T^{n+1} S=(n+1) T^{n}$. However, the left-hand side has operator norm at most $2\|S\|$, while the right-hand side has operator norm $n+1$, contradiction.

