Functional Analysis, BSM, Spring 2012

Extra problems

1. Suppose that $x \in \ell_{p_{0}}$ for some $1<p_{0}<\infty$. Prove that $\|x\|_{p} \rightarrow\|x\|_{\infty}$ as $p \rightarrow \infty$.
2. Prove that any $\Lambda \in \ell_{\infty}^{*}$ can be uniquely written as

$$
\Lambda=\Lambda_{y}+\Lambda^{\prime}
$$

where $y \in \ell_{1}$ and $\Lambda^{\prime} \in \ell_{\infty}^{*}$ vanishes on c_{0} (that is, $\Lambda^{\prime} x=0$ for any $x \in c_{0}$).
3. a) Let $(X,\|\cdot\|)$ be a normed space, $Y \leq X$ a linear subspace. The distance of $x \in X$ from Y is defined as

$$
d(x, Y) \stackrel{\text { def }}{=} \inf _{y \in Y}\|x-y\|
$$

Let x_{0} be in $X \backslash Y$ with $d\left(x_{0}, Y\right)>0$ (in other words, $\left.x_{0} \notin \operatorname{cl}(Y)\right)$. Prove that there exists $\Lambda \in X^{*}$ such that $\Lambda y=0$ for any $y \in Y, \Lambda x_{0}=d\left(x_{0}, Y\right)$ and $\|\Lambda\|=1$.
b) Prove that if X^{*} is separable, then so is X. Show an example where the converse is not true.
4. Let $(X,\|\cdot\|)$ be a normed space.
a) Show that if X is finite dimensional, then so is X^{*}.
b) Show that if X^{*} is finite dimensional, then so is X.
5. Prove that a Banach space X is reflexive if and only if X^{*} is reflexive.
6. Let X and Y be Banach spaces and $T \in B(X, Y)$ a bounded operator from X to Y. The Banach space adjoint of T is the operator T^{*} from Y^{*} to X^{*} defined by

$$
\left(T^{*} \Lambda\right) x=\Lambda(T x) \text { for any } \Lambda \in Y^{*}, x \in X
$$

In other words, for $\Lambda \in Y^{*}$ let $T^{*} \Lambda$ be the functional that maps x to $\Lambda(T x)$.
Show that $T^{*} \in B\left(Y^{*}, X^{*}\right)$, that is, T^{*} is bounded. Also show that $\left\|T^{*}\right\|=\|T\|$.
7. Let $X=Y=\ell_{1}$ and let T be the right shift operator

$$
T\left(\alpha_{1}, \alpha_{2}, \ldots\right)=\left(0, \alpha_{1}, \alpha_{2}, \ldots\right)
$$

We identified ℓ_{1}^{*} with ℓ_{∞}. So T^{*} can be viewed as an $\ell_{\infty} \rightarrow \ell_{\infty}$ operator. Which is it?
8. Find continuumly many vectors in ℓ_{p} that are linearly independent.
9. a) Let $p, q>1$ be real numbers with $1 / p+1 / q=1$. Prove that for any positive real numbers a, b :

$$
a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}
$$

Hint: since \log is a concave function, $\log \left(t a^{p}+(1-t) b^{q}\right) \geq t \log \left(a^{p}\right)+(1-t) \log \left(b^{q}\right)$ for $t \in(0,1)$.
b) Prove the Hölder inequality: if $\left(\alpha_{1}, \alpha_{2}, \ldots\right) \in \ell_{p}$ and $\left(\beta_{1}, \beta_{2}, \ldots\right) \in \ell_{q}$, then

$$
\sum_{i=1}^{\infty}\left|\alpha_{i} \beta_{i}\right| \leq \sqrt[p]{\sum_{i=1}^{\infty}\left|\alpha_{i}\right|^{p}} \cdot \sqrt[q]{\sum_{i=1}^{\infty}\left|\beta_{i}\right|^{q}}
$$

10. Let $p, q, r>1$ with $1 / p+1 / q+1 / r=1$. Suppose that $\left(\alpha_{1}, \alpha_{2}, \ldots\right) \in \ell_{p},\left(\beta_{1}, \beta_{2}, \ldots\right) \in \ell_{q}$ and $\left(\gamma_{1}, \gamma_{2}, \ldots\right) \in$ ℓ_{r}. Prove that

$$
\sum_{i=1}^{\infty}\left|\alpha_{i} \beta_{i} \gamma_{i}\right| \leq \sqrt[p]{\sum_{i=1}^{\infty}\left|\alpha_{i}\right|^{p}} \cdot \sqrt[q]{\sum_{i=1}^{\infty}\left|\beta_{i}\right|^{q}} \cdot \sqrt[r]{\sum_{i=1}^{\infty}\left|\gamma_{i}\right|^{r}}
$$

11. Let X denote the space of continuous functions on $[0,1] ; X$ is a Banach space with the supremum norm:

$$
\|f\|=\sup _{t \in[0,1]}|f(t)|=\max _{t \in[0,1]}|f(t)| .
$$

Consider the following subset of X :

$$
Y=\left\{g: g(0)=0 \text { and } \int_{0}^{1} g(t) \mathrm{d} t=0\right\}
$$

Show that Y is a closed linear subspace of X. Let $f \in X$ be the function for which $f(t)=t ; 0 \leq t \leq 1$. Determine $d(f, Y)$. Show that $d(f, g)>d(f, Y)$ for any $g \in Y$.
12. a) We say that two norms $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ on the same vector space X are equivalent if there exist $c, C>0$ such that $c\|x\|_{1} \leq\|x\|_{2} \leq C\|x\|_{1}$ for any $x \in X$. Prove that any two norms on a finite dimensional vector space are equivalent.
b) Prove that every finite dimensional normed space is complete.
13. Let X be a Banach space, $T \in B(X)$ and $T^{*} \in B\left(X^{*}\right)$ the Banach space adjoint of T.
a) Prove that $\operatorname{ran} T$ is not dense if and only if T^{*} is not injective.
b) Prove that if $\lambda \in \sigma_{r}(T)$, then $\lambda \in \sigma_{p}\left(T^{*}\right)$.
c) Prove that if T is not injective, then $\operatorname{ran} T^{*}$ is not dense.
d) Prove that if $\lambda \in \sigma_{p}(T)$, then $\lambda \in \sigma_{p}\left(T^{*}\right) \cup \sigma_{r}\left(T^{*}\right)$.
14. a) Let X be a Banach space, $S, T \in B(X)$. Show that $(S T)^{*}=T^{*} S^{*}$.
b) Prove that $\sigma\left(T^{*}\right) \subset \sigma(T)$. (In fact, $\sigma\left(T^{*}\right)=\sigma(T)$.)
15. Let X be a non-trivial normed space. Suppose that $S T-T S=I$ for some linear operators $S, T: X \rightarrow X$. Prove that at least one of the operators S, T is unbounded.
16. Let

$$
U=\left\{\left(\alpha_{1}, \alpha_{2}, \ldots\right): \alpha_{i} \in \mathbb{C} \text { and } \alpha_{i}=0 \text { for all but finitely many } i \text { 's }\right\}
$$

This is clearly a linear subspace of ℓ_{1}. Then U has an algebraic complement V : another linear subspace with $U+V=\ell_{1}$ and $U \cap V=\{0\}$. (Actually, there are a lot of such V; we pick an arbitrary one.) We define a linear functional Λ on ℓ_{1} : any $z \in \ell_{1}$ can be uniquely written as $z=u+v$, where $u=\left(\alpha_{1}, \alpha_{2}, \ldots\right) \in U$ and $v \in V$. Let

$$
\Lambda z=\sum_{i=1}^{\infty} \alpha_{i}
$$

Prove that Λ is not bounded.
17. Let X be a separable normed space and $\Lambda_{n} \in X^{*}$. Suppose that there exists C such that $\left\|\Lambda_{n}\right\| \leq C$ for all n. Prove that there exist a subsequence $\Lambda_{n_{k}}$ and a $\Lambda \in X^{*}$ such that for all $x \in X$

$$
\Lambda_{n_{k}} x \rightarrow \Lambda x \text { as } k \rightarrow \infty
$$

Is this true for non-separable spaces?
18. Let $(X,\|\cdot\|)$ be a normed space and $M \leq X$ a linear subspace. In linear algebra we defined the quotient space X / M : it is a vector space, the elements of which are equivalence classes of X with respect to the relation $x \sim y \Leftrightarrow x-y \in M$. The equivalence class of x is usually denoted by $[x]$.
a) Suppose that M is a closed linear subspace of X. Prove that

$$
\|[x]\| \stackrel{\text { def }}{=} d(x, M)
$$

is well-defined and is a norm on the quotient space X / M.
b) Prove that if X is a Banach space and $M \leq X$ is closed, then X / M is a Banach space with the above norm.
19. Let M° denote the following subspace of X^{*} :

$$
M^{\circ} \stackrel{\text { def }}{=}\left\{\Lambda \in X^{*}: \Lambda x=0 \text { for all } x \in M\right\}
$$

Prove that if $M \leq X$ is closed, then M^{*} is isometrically isomorphic to X^{*} / M°. Also prove that $(X / M)^{*}$ is isometrically isomorphic to M°.
20. Let X be a Banach space. Show that X is finite dimensional if and only if the closed unit ball $\bar{B}_{1}(0)=$ $\{x \in X:\|x\| \leq 1\}$ is compact.

