Degrees up to 200

The table below shows our lower bounds on the asymptotic independence ratio 𝛂*d of random d-regular graphs (the density of the Markovian independent set and the density of the augmented independent set) along with the 1-RSB upper bound for comparison.

ddensity (Markovian)density (augmented)upper bound (1-RSB)
30.414189150.427180850.45085965
40.365803560.383395880.41119456
50.332686550.350897460.37926817
60.307765030.325259450.35298455
70.287919220.304272790.33088435
80.271512010.286638820.31197257
90.257582660.271526200.29555390
100.245521110.258371400.28112800
110.234916520.246775790.26832486
120.225479340.236447690.25686422
130.216997940.227167780.24652941
140.209312980.218767280.23714986
150.202301530.211113770.22858917
160.195866750.204101630.22073678
170.189931000.197645320.21350194
180.184431080.191674710.20680939
190.179314860.186131660.20059612
200.174538830.180967440.19480887
210.170066310.176140860.18940230
220.165866110.171616830.18433753
230.161911450.167365200.17958099
240.158179220.163359930.17510353
250.154649300.159578350.17087971
260.151304080.156000640.16688719
270.148128080.152609370.16310628
280.145107600.149389150.15951954
290.142230470.146326320.15611146
300.139485850.143408700.15286821
310.136864000.140625400.14977737
320.134356200.137966640.14682782
330.131954540.135423630.14400949
340.129651900.132988400.14131332
350.127441790.130653740.13873106
360.125318330.128413090.13625523
370.123276140.126260510.13387900
380.121310280.124190500.13159613
390.119416250.122198110.12940092
400.117589900.120278730.12728814
410.115827420.118428170.12525296
420.114125270.116642530.12329096
430.112480190.114918220.12139803
440.110889180.113251950.11957040
450.109349430.111640640.11780455
460.107858340.110081440.11609725
470.106413490.108571700.11444547
480.105012620.107108970.11284640
490.103653630.105690930.11129743
500.102334540.104315450.10979610
510.101053520.102980530.10834016
520.099808840.101684280.10692745
530.098598880.100424950.10555598
540.097422120.099200900.10422389
550.096277130.098010560.10292940
560.095162570.096852500.10167088
570.094077150.095725320.10044676
580.093019710.094627760.09925559
590.091989080.093558580.09809598
600.090984230.092516640.09696663
610.090004120.091500850.09586632
620.089047820.090510180.09479388
630.088114410.089543670.09374822
640.087203030.088600380.09272830
650.086312880.087679450.09173313
660.085443170.086780050.09076178
670.084593170.085901390.08981336
680.083762180.085042710.08888703
690.082949550.084203330.08798199
700.082154620.083382540.08709747
710.081376810.082579720.08623277
720.080615520.081794240.08538718
730.079870230.081025520.08456005
740.079140390.080273000.08375075
750.078425510.079536150.08295869
760.077725110.078814460.08218329
770.077038720.078107440.08142401
780.076365920.077414620.08068033
790.075706290.076735570.07995175
800.075059400.076069840.07923780
810.074424910.075417040.07853801
820.073802410.074776780.07785196
830.073191560.074148660.07717922
840.072592010.073532350.07651939
850.072003460.072927490.07587209
860.071425560.072333740.07523694
870.070858050.071750800.07461359
880.070300600.071178350.07400171
890.069752950.070616090.07340096
900.069214820.070063760.07281103
910.068685980.069521060.07223162
920.068166140.068987750.07166243
930.067655090.068463560.07110318
940.067152600.067948260.07055362
950.066658420.067441610.07001346
960.066172360.066943380.06948247
970.065694190.066453350.06896041
980.065223730.065971310.06844703
990.064760790.065497070.06794212
1000.064305160.065030420.06744546
1010.063856680.064571180.06695684
1020.063415160.064119150.06647606
1030.062980440.063674180.06600291
1040.062552360.063236080.06553723
1050.062130750.062804680.06507881
1060.061715480.062379830.06462749
1070.061306370.061961380.06418309
1080.060903310.061549170.06374545
1090.060506130.061143050.06331442
1100.060114710.060742890.06288982
1110.059728930.060348560.06247153
1120.059348650.059959910.06205938
1130.058973760.059576830.06165324
1140.058604130.059199190.06125298
1150.058239640.058826860.06085847
1160.057880200.058459730.06046956
1170.057525680.058097700.06008615
1180.057175980.057740640.05970811
1190.056831000.057388450.05933532
1200.056490650.057041030.05896767
1210.056154820.056698280.05860505
1220.055823430.056360100.05824735
1230.055496370.056026390.05789448
1240.055173570.055697060.05754632
1250.054854930.055372040.05720279
1260.054540380.055051210.05686378
1270.054229820.054734510.05652920
1280.053923190.054421850.05619897
1290.053620400.054113140.05587299
1300.053321380.053808320.05555118
1310.053026060.053507310.05523346
1320.052734360.053210020.05491975
1330.052446220.052916390.05460997
1340.052161570.052626360.05430404
1350.051880340.052339840.05400189
1360.051602470.052056780.05370344
1370.051327900.051777110.05340863
1380.051056560.051500760.05311739
1390.050788400.051227680.05282965
1400.050523360.050957800.05254534
1410.050261370.050691070.05226440
1420.050002400.050427440.05198677
1430.049746380.050166830.05171239
1440.049493260.049909200.05144120
1450.049242990.049654500.05117314
1460.048995520.049402680.05090816
1470.048750800.049153680.05064620
1480.048508790.048907460.05038720
1490.048269430.048663960.05013112
1500.048032690.048423140.04987791
1510.047798510.048184960.04962751
1520.047566860.047949370.04937988
1530.047337690.047716320.04913497
1540.047110960.047485780.04889273
1550.046886620.047257690.04865312
1560.046664650.047032030.04841609
1570.046445010.046808740.04818160
1580.046227640.046587800.04794961
1590.046012530.046369170.04772007
1600.045799620.046152790.04749296
1610.045588890.045938650.04726822
1620.045380310.045726700.04704581
1630.045173830.045516910.04682571
1640.044969420.045309250.04660787
1650.044767060.045103670.04639226
1660.044566710.044900160.04617885
1670.044368330.044698670.04596759
1680.044171910.044499180.04575845
1690.043977410.044301650.04555141
1700.043784790.044106050.04534642
1710.043594040.043912360.04514346
1720.043405120.043720550.04494250
1730.043218010.043530590.04474350
1740.043032670.043342440.04454643
1750.042849090.043156080.04435128
1760.042667240.042971500.04415800
1770.042487080.042788660.04396657
1780.042308610.042607530.04377696
1790.042131790.042428090.04358915
1800.041956590.042250310.04340311
1810.041783010.042074180.04321881
1820.041611010.041899670.04303623
1830.041440560.041726750.04285534
1840.041271660.041555400.04267612
1850.041104270.041385600.04249855
1860.040938380.041217330.04232259
1870.040773970.041050570.04214824
1880.040611010.040885300.04197546
1890.040449480.040721490.04180424
1900.040289370.040559130.04163455
1910.040130660.040398190.04146637
1920.039973320.040238650.04129968
1930.039817340.040080510.04113445
1940.039662710.039923740.04097068
1950.039509390.039768310.04080834
1960.039357380.039614210.04064741
1970.039206650.039461430.04048788
1980.039057200.039309940.04032971
1990.038909000.039159750.04017290
2000.038762040.039010800.04001743


Bounds on the independence ratio of random regular graphs

You can use this page to compute the lower bounds on the independence ratio of random regular graphs given by the paper:
Boosted second moment method in random regular graphs
by Balázs Gerencsér and Viktor Harangi.

Hit 'Go' and compute our lower bound for a specific degree deg ≤ 500,000. First the density of the "Markovian" independent set is computed, then the density of the augmented independent set (which is our best lower bound). For comparison, the 1-RSB upper bound is also displayed (which is actually conjectured to be sharp for deg ≥ 20). The optimality percentage shows the relative size of our lower bound compared to the upper bound.

Tick the box show_plot to visually confirm that the required condition of the second moment method is satisfied by checking that the local maximum corresponding to the independent coupling (red dot on the plot) is the global maximum of the plotted function. Note that the plot is trimmed: the function is not plotted where the function value is more than some ε below the red dot.

Range of degrees

Hit 'Go' to compute our lower bounds for a range of degrees.

Thin independent sets

We say that an independent set A is t-thin if every vertex outside A has at most t neighbors in A. Such thin independent sets can be used to prove the existence of star decompositions.

Hit 'Go' to compute the density of t-thin independent sets.