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Abstract

We say that a set in a Euclidean space does not contain an angle α if the angle
determined by any three points of the set is not equal to α. The goal of this paper is
to construct compact sets of large Hausdorff dimension that do not contain a given
angle α ∈ (0, π). We will construct such sets in Rn of Hausdorff dimension c(α)n
with a positive c(α) depending only on α provided that α is different from π/3, π/2
and 2π/3. This improves on an earlier construction due to several authors which
gave c(α) log n for the dimension.

The main result of the paper concerns the case of the angles π/3 and 2π/3. We
present self-similar sets in Rn of Hausdorff dimension c 3

√
n/ log n with the property

that they do not contain the angles π/3 and 2π/3.
The constructed sets avoid not only the given angle α but also a small neighbour-

hood of α.
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1 Introduction

The following problem was addressed in [3]: given an angle α ∈ (0, π) and a positive integer
n, what is the maximal Hausdorff dimension C(n, α) of an analytic set K ⊂ Rn with the
property that K does not contain the angle α, that is, for any three distinct points A,B,C
of the set ∠ABC 6= α. (If K does not need to be analytic, then one can use transfinite
recursion to construct a full dimensional set not containing α [3, Theorem 3.13].) It was
proved that C(n, α) ≤ n − 1 for arbitrary α, in other words, if the Hausdorff dimension
of an analytic set K ⊂ Rn is greater than n − 1, then K contains every angle α ∈ (0, π).
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As far as lower bounds are concerned, the line segment shows that C(n, α) ≥ 1. This was
improved in [3] for angles α 6= π/3, π/2, 2π/3 by proving that C(n, α) ≥ c(α) log n where
c(α) > 0 depends only on α. It was actually shown that for any δ > 0 there exists a
self-similar set K ⊂ Rn of dimension cδ log n such that all angles contained by K are from
the δ-neighbourhood of the set {0, π/3, π/2, 2π/3, π}.

In Section 2 we will improve this construction and present a self-similar set of di-
mension cδn with the same property (that is, all angles are from the δ-neighbourhood of
{0, π/3, π/2, 2π/3, π}). It implies that C(n, α) ≥ c(α)n given that α 6= π/3, π/2, 2π/3.

The main result of this paper is the construction of Section 3, where we present a
self-similar set in Rn with dimension c 3

√
n/ log n that contains neither π/3, nor 2π/3. (Pre-

viously, no analytic set of dimension greater than 1 was known that avoids any of these
angles.) The constructed sets also avoid a small neighbourhood of π/3 and 2π/3. To be
more precise, for any δ > 0 we prove the existence of a set (in some Euclidean space of
sufficiently large dimension) which has dimension cδ−1/ log(δ−1) and which contains no
angle in the δ-neighbourhood of π/3 and 2π/3. This latter result is essentially sharp: if
the dimension of K is at least Cδ−1 log(δ−1) for some δ > 0, then K must contain an angle
in the δ-neighbourhood of π/3 [3, Corollary 3.7] as well in the δ-neighbourhood of 2π/3 [3,
Theorem 3.11]. (Throughout this paper c and C denote absolute constants but different
appearances may denote different values.)

As for the angle π/2, it was proved that if the dimension of K is greater than 1, then
K must contain angles arbitrarily close to π/2 [3, Theorem 3.2]. In other words, it is
impossible to construct sets of dimension greater than 1 that avoid a neighbourhood of
π/2. However, a recent (and yet unpublished) result of András Máthé says that there exist
compact sets in Rn with Hausdorff dimension n/2 such that they do not contain the angle
π/2. (His construction uses number theoretic ideas.) On the other hand, it was already
known that analytic sets in Rn with Hausdorff dimension greater than dn/2e must contain
π/2 [3, Theorem 2.4]. Consequently, n/2 ≤ C(n, π/2) ≤ dn/2e.

Finally, we mention a result of similar flavour. In [2, 5, 6] it was shown that for any
three points in R or in R2 there exists a set of full Hausdorff dimension that contains no
similar copy to the three given points. It is open whether the analogous result holds in
higher dimension.

2 Avoiding general angles

In this section we construct sets with the property that any angle contained by the set is
close to one of the following angles: 0, π/3, π/2, 2π/3, π.

First we define homothetic self-similar sets and prove some simple facts about them.
Let us take points P1, . . . , Pm in some Euclidean space Rn. We denote the convex hull of
these points by K0. For every i = 1, . . . ,m we take a homothety ϕi with center Pi and scale
factor 0 < qi < 1. Let K be the unique non-empty compact set satisfying K =

⋃
i ϕi(K).

One can get this homothetic self-similar set K by setting

Kr
def
=

m⋃
i=1

ϕi (Kr−1) =
⋃

i1,...,ir

ϕi1 ◦ · · · ◦ ϕir(K0),
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then K =
⋂∞
r=1Kr. We will use the following notations:

dmin = min{|Pi − Pj| : i 6= j}; dmax = max{|Pi − Pj| : i 6= j}; qmax = max{q1, . . . , qm}.

Set η
def
= qmaxdmax/dmin. We will assume that η < 1/2 which clearly implies that the sets

ϕi(K0) (i = 1, . . . ,m) are pairwise disjoint. Therefore the well-known Moran equation for
the dimension s of the self-similar K holds:

qs1 + · · ·+ qsm = 1,

which yields that in the special case q1 = · · · = qm = q the dimension is

s =
logm

log (1/q)
.

For these sets most of the dimension notions (like Hausdorff or Minkowski dimension)
coincide so from now on we will simply say dimension.

The next proposition says that the set of directions in K is close to the set of directions
in {P1, . . . , Pm}.

Proposition 2.1. Suppose that η = qmaxdmax/dmin < 1/2. Then for any two distinct points
A,B ∈ K there exist i 6= j such that the angle between the vectors A − B and Pi − Pj is
less than πη.

Proof. There exist unique sequences i1, i2, . . . and j1, j2, . . . such that

A ∈ ϕi1 ◦ · · · ◦ ϕir(K) and B ∈ ϕj1 ◦ · · · ◦ ϕjr(K)

for any positive integer r. Let r be the smallest index with ir 6= jr. Now let ψ be the

homothety defined as ϕi1 ◦ · · · ◦ ϕir−1 = ϕj1 ◦ · · · ◦ ϕjr−1 . Clearly A′
def
= ψ−1(A) ∈ ϕir(K)

and B′
def
= ψ−1(B) ∈ ϕjr(K). It also follows that A′ − B′ and A− B are parallel (one is a

positive scalar multiple of the other).
So we can assume that A and B are in different level 1 parts of K, that is, there exist

indices i 6= j such that A ∈ ϕi(K) and B ∈ ϕj(K). Thus |A − Pi|, |B − Pj| ≤ qmaxdmax.
Let us now translate the segment PiPj by the vector A − Pi so that Pi goes to A, and
Pj goes to some point Q. Then the angle in question is equal to ∠BAQ. We have
|B−Q| ≤ |A−Pi|+ |B−Pj| ≤ 2qmaxdmax. On the other hand, |A−Q| = |Pi−Pj| ≥ dmin.
Since η < 1/2, it follows that |B − Q| < |A − Q|. Under this condition the angle ∠BAQ
is clearly at most

arcsin

(
|B −Q|
|A−Q|

)
≤ arcsin(2η) ≤ πη.

Corollary 2.2. Suppose that η < 1/2. Then for any three distinct points A,B,C of K
there exist indices i1, i2, i3, i4 such that

|∠ABC − ∠(Pi1 − Pi2 , Pi3 − Pi4)| < 2πη.
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Proof. Let A,B,C,D ∈ K with A 6= B and C 6= D. We apply the above proposition for
the vectors A−B and C −D. It follows that there exist indices i1, i2, i3, i4 such that

|∠(A−B,C −D)− ∠(Pi1 − Pi2 , Pi3 − Pi4)| < 2πη.

Setting B = D completes the proof.

In [3] this self-similar construction was used in the special case when the points Pi
are the vertices of a regular simplex in Rn. Then m = n + 1; dmin = dmax so setting
q1 = · · · = qm = q < 1/2 yields that K has dimension log(n + 1)/ log(1/q) and all angles
are in the 2πq-neighbourhood of the set {0, π/3, π/2, 2π/3, π}. So for any angle α not in
this set there is a constant c(α) such that in Rn a set K of dimension c(α) log(n + 1) can
be given with the property that K does not contain α as an angle.

The following simple observation enables us to do better than that, namely, we will
show the existence of a set with the same property and of dimension c(α)n. For the above
construction to work, it suffices to know that the distances |Pi−Pj| are approximately the
same (equal with some small error δ). And there are a lot of points in a Euclidean space
with this property: in 1983 Erdős and Füredi proved [1] that for any δ > 0 there exist
at least (1 + cδ2)

n
points in Rn such that the distance of any two is between 1 and 1 + δ.

This is also a special case of the well-known lemma of Johnson and Lindenstrauss which
was first published in 1984 (see Lemma 3.3 in the next section).

Now we prove the simple fact that if we have four points with each pair having approx-
imately the same distance then the angles enclosed by the segments are close to either π/3
or π/2.

Lemma 2.3. Suppose that the distance of any two of some given points is between 1 and
1 + δ for some δ > 0. Then the angle between two arbitrary nonzero vectors with endpoints
from the given set is in the Cδ-neighbourhood of the set {0, π/3, π/2, 2π/3, π}.

Proof. We will assume that 0 < δ < 0.1. If the lemma holds under this assumption, then
it must also hold for arbitrary δ > 0 (possibly with some larger C).

Take the endpoints of the two vectors. The set of these endpoints consists of either
two, three or four points.

In the first case the two vectors coincide or they are the negative of each other. So the
enclosed angle is 0 or π.

In the second case the two vectors share exactly one common endpoint which we denote
by A. Let the two other endpoints be B1, B2 and let α = ∠B1AB2. (So the angle enclosed
by the vectors is α or π − α.) By the cosine law we have

cosα =
|A−B1|2 + |A−B2|2 − |B1 −B2|2

2|A−B1||A−B2|
.

Using this and the inequalities (1 + δ)2 < 1 + 3δ and 1− 3δ < 1/(1 + 3δ) we obtain that

1

2
− 3δ <

(1− 3δ)2

2
≤ 2− (1 + 3δ)

2(1 + 3δ)
≤ cosα ≤ 2(1 + 3δ)− 1

2
=

1

2
+ 3δ.

Since arccos is a Lipschitz function on the interval [0.2, 0.8], it follows that |α−π/3| < Cδ.
Therefore, in this case the enclosed angle is in the Cδ-neighbourhood of π/3 or 2π/3.
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Finally, in the third case we have four distinct points A1, A2, B1, B2. Using coordinates,
one can easily obtain the following formula for the inner product of the vectors A1 − A2

and B1 −B2:

〈A1 − A2, B1 −B2〉 =
(
|A1 −B2|2 + |A2 −B1|2 − |A1 −B1|2 − |A2 −B2|2

)
/2,

which yields that for the angle β enclosed by A1 − A2 and B1 −B2 it holds that

cos β =
|A1 −B2|2 + |A2 −B1|2 − |A1 −B1|2 − |A2 −B2|2

2|A1 − A2||B1 −B2|

(see also in [7]). Using that each distance is between 1 and 1 + δ we obtain that

|cos β| ≤ 2(1 + δ)2 − 2

2
= 2δ + δ2 ≤ 3δ.

It follows that |β − π/2| < Cδ.

In the next theorem we put together the above results to obtain large dimensional sets
with all angles close to the special angles 0, π/3, π/2, 2π/3, π.

Theorem 2.4. There is a δ0 > 0 such that for any 0 < δ ≤ δ0 there exists a self-similar
set in Rn of dimension at least

cδn = cδ2 log−1(1/δ) · n

such that the angle determined by any three points of the set is in the δ-neighbourhood of
the set {0, π/3, π/2, 2π/3, π}.

Proof. Take some real number 0 < δ ≤ 1/3. As we mentioned before Lemma 2.3, there
exist m ≥ (1 + cδ2)n points P1, . . . , Pm ∈ Rn such that the distance of any two of them
is between 1 and 1 + δ. Take the homotheties with centre Pi and ratio qi = q = δ, and
consider the corresponding self-similar set K. On one hand, the dimension of K is

logm

log(1/q)
≥ n log(1 + cδ2)

log(1/δ)
≥ c

δ2

log(1/δ)
n.

On the other hand, Lemma 2.3 and Corollary 2.2 imply that any angle in our self-similar
set is in the Cδ-neighbourhood of {0, π/3, π/2, 2π/3, π}. Changing δ to δ/C completes the
proof.

3 Avoiding angles π/3 and 2π/3

Our goal in this section is to construct large dimensional sets avoiding the angles π/3 and
2π/3. Again, we will use the self-similar construction described at the beginning of the
previous section. The idea is to find (many) points Pi such that any angle determined by
them is in a small neighbourhood of π/3 but avoids an even smaller neighbourhood of π/3.

We were inspired by the following r-colouring of the complete graph on 2r vertices. Let
C1, . . . , Cr denote the colours and let us associate to each vertex a 0-1 sequence of length
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r. Consider the edge between the vertices corresponding to the sequences i1, . . . , ir and
j1, . . . , jr. We colour this edge with Ck where k denotes the first index where the sequences
differ, that is, i1 = j1, . . . , ik−1 = jk−1, ik 6= jk. Let us denote this coloured graph by
Gr = Gr(C1, . . . , Cr). This is a folklore graph colouring showing that the multicolour
Ramsey number Rr(3) is greater than 2r.

One can obtain Gr recursively as well. Consider the colouring Gr−1(C2, . . . , Cr), and
take two copies of this coloured graph. Let the edges going between the two copies be all
coloured with C1. It is easy to see that this way we get Gr(C1, . . . , Cr). This colouring
clearly has the property that there is no monochromatic triangle in the graph. Moreover,
every triangle has two sides with the same colour and a third side with a different colour
of higher index.

The idea is to realize Gr geometrically in the following manner: the vertices of the
graph will be represented by points of a Euclidean space and edges with the same colour
will correspond to equal distances. In the sequel we will show that Gr can be represented
in the above sense. First we prove a simple geometric fact.

Proposition 3.1. Let m be a non-negative integer and R, l be positive real numbers with
R ≤ l/

√
2. Take a (2m+ 2)-dimensional sphere S with radius

R′
def
=

√
1

4
l2 +

1

2
R2 ≤

√
1

4
l2 +

1

2

(
l√
2

)2

=
l√
2
.

Then there exist two m-dimensional spheres X ,Y ⊂ S with radius R such that |X−Y | = l
for any X ∈ X and any Y ∈ Y.

Proof. We may assume that S = {P ∈ R2m+3 : |P | = R′}. Set t
def
=
√
l2 − 2R2/2 and take

the spheres

X def
=
{
X = (x1, . . . , xm+1,−t, 0, . . . , 0) ∈ R2m+3 : x21 + · · ·+ x2m+1 = R2

}
,

Y def
=
{
Y = (0, . . . , 0, t, y1, . . . , ym+1) ∈ R2m+3 : y21 + · · ·+ y2m+1 = R2

}
.

For any X ∈ X we have |X| =
√
R2 + t2 = R′ and thus X ⊂ S. Similarly, Y ⊂ S. On the

other hand, for any X ∈ X and Y ∈ Y it clearly holds that |X−Y | =
√
R2 + (2t)2 +R2 =

l.

Lemma 3.2. Let l1 ≥ l2 ≥ . . . ≥ lr > 0 be a decreasing sequence of positive reals. By
Ir we denote the set of 0-1 sequences of length r. Then 2r points Pi1,...,ir , (i1, . . . , ir) ∈ Ir
can be given in some Euclidean space in such a way that for two distinct 0-1 sequences
(i1, . . . , ir) 6= (j1, . . . , jr) the distance of Pi1,...,ir and Pj1,...,jr is equal to lk where k denotes
the first index where the sequences differ, that is, i1 = j1, . . . , ik−1 = jk−1, ik 6= jk.

Proof. For the sake of simplicity, we say that the points Pi1,...,ir , (i1, . . . , ir) ∈ Ir have
configuration Pr(l1, . . . , lr) if the distances between the points are as in the claim of the
lemma.

We will prove by induction that there exist points with configuration Pr(l1, . . . , lr)
on a (2r − 2)-dimensional sphere with radius at most l1/

√
2. This is clearly true for

r = 1. Suppose that it holds for r− 1. The induction hypothesis applied for the distances
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l2 ≥ . . . ≥ lr yields that there exist points with configuration Pr−1(l2, . . . , lr) on a (2r−1−2)-
dimensional sphere with radius R ≤ l2/

√
2.

Since R ≤ l2/
√

2 ≤ l1/
√

2, Proposition 3.1 implies that there is a (2r − 2)-dimensional
sphere S with some radius R′ ≤ l1/

√
2 such that it contains two (2r−1 − 2)-dimensional

spheres with common radius R such that no matter how we take one point from each
sphere their distance is l1.

We can take a copy of the configuration Pr−1(l2, . . . , lr) on each of these two spheres.
The union of them will clearly have configuration Pr(l1, . . . , lr).

Using the above lemma we now construct a large set of points with the property that any
angle determined by them is in a small neighbourhood of π/3 but avoids an even smaller
neighbourhood of π/3. We will need the previously mentioned Johnson-Lindenstrauss
lemma.

Lemma 3.3 (Johnson-Lindenstrauss lemma [4]). Suppose that m points P1, . . . , Pm are
given in some Euclidean space Rd. For any δ > 0 one can find points P ′1, . . . , P

′
m in the

dC logm/δ2e-dimensional Euclidean space in such a way that

|Pi − Pj| ≤ |P ′i − P ′j| ≤ (1 + δ)|Pi − Pj| (1 ≤ i, j ≤ m).

Theorem 3.4. There exist absolute constants c, C > 0 such that for any positive integer
r and positive real ε < 1, 2r points can be given in the dCr3/ε2e-dimensional Euclidean
space with the property that for any angle α determined by three given points the following
holds:

c
ε

r
<
∣∣∣α− π

3

∣∣∣ < ε.

Moreover, for any four distinct points A, B, C, D of these points we have∣∣∣∠(A−B,C −D)− π

2

∣∣∣ < ε.

Proof. Let λ > 1 be a real number. We use Lemma 3.2 with li = λr−i (i = 1, . . . , r). The
lemma gives us 2r points which have configuration Pr(λr−1, . . . , λ, 1). Let us denote the
set of these points by S, and take three distinct points in S. By construction, the triangle
determined by these points has two sides with the same length λs and a third side with a
smaller length λt for some integers 0 ≤ t < s ≤ r − 1. Let this third side be A1A2 and let
B denote the remaining vertex. (That is, |A1 − A2| = λt < λs = |A1 −B| = |A2 −B|.)

Now we apply the Johnson-Lindenstrauss lemma for the points in S with some 0 < δ <
1; by S ′ we will denote the set of the points obtained. We consider the points A′1, A

′
2, B

′ ∈ S ′
corresponding to the points A1, A2, B. Using the fact that (1 + δ)2 < 1 + 3δ we get that

λ2t ≤ |A′1 − A′2|2 < (1 + 3δ)λ2t; λ2s ≤ |A′i −B′|2 < (1 + 3δ)λ2s (i = 1, 2).

By the cosine law we have

cos (∠A′1A
′
2B
′) =

|A′1 − A′2|2 + |A′2 −B′|2 − |A′1 −B′|2

2|A′1 − A′2||A′2 −B′|
<

(1 + 3δ) (λ2s + λ2t)− λ2s

2λsλt
=

1

2λs−t
+ 3δ

λ2s + λ2t

2λsλt
≤ 1

2λ
+ 3δ

λr + 1

2
.
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Set λ = 1 + cε
r

and δ = cε
36r

with a sufficiently small constant c. Then

λr =
(

1 +
cε

r

)r
< exp(cε) < 1 + 2cε < 2.

Thus

cos (∠A′1A
′
2B
′) <

1

2λ
+ 3δ

λr + 1

2
<

(
1

2
− λ− 1

2λ

)
+

9

2
δ <

1

2
− cε

4r
+
cε

8r
=

1

2
− cε

8r
.

Since cos is a Lipschitz function with Lipschitz constant 1, it follows that ∠A′1A
′
2B
′ >

π/3 + cε/8r. The same holds for the angle ∠A′2A
′
1B
′. Therefore for the third angle in the

triangle we get ∠A′1B
′A′2 < π/3− cε/4r.

On the other hand, the distance of any two points in S ′ is at least 1 and at most
(1+δ)λr−1 < λr < 1+2cε. Now let us take four distinct points A, B, C, D in S ′. As we have
seen in the proof of Lemma 2.3, |∠(ABC)− π/3| < ε and |∠(A−B,C −D)− π/2| < ε
provided that c is sufficiently small.

Finally, by the Johnson-Lindenstrauss lemma the set S ′ is contained in a Euclidean
space of dimension at most dC log(2r)/δ2e = dCr3/ε2e.

This discrete set of points can be blown up (using the self-similar construction described
in Section 2) to a large dimensional set that does not contain the angles π/3 and 2π/3.

Theorem 3.5. There exist absolute constants c, C > 0 such that for any 0 < δ < ε < 1
with ε/δ > C there exists a self-similar set of dimension

s ≥ cε/δ

log(1/δ)

in a Euclidean space of dimension

n ≤ Cε

δ3

such that any angle determined by three points of the set is inside the ε-neighbourhood of
{0, π/3, π/2, 2π/3, π} but outside the δ-neighbourhood of {π/3, 2π/3}.

Proof. Set r = [cε/δ]. The previous theorem claims that for

n = dCr3/ε2e ≤ Cε/δ3; m = 2r,

there exist m points P1, . . . , Pm ∈ Rn such that for any three distinct points Pi, Pj, Pk

2δ <
∣∣∣∠PiPjPk − π

3

∣∣∣ < ε

2
,

and for any four different points Pi, Pj, Pk, Pl∣∣∣∠(Pi − Pj, Pk − Pl)−
π

2

∣∣∣ < ε

2
.

Now we take the self-similar set of Section 2 with qi = q = cδ. The set obtained has
dimension

logm

log(1/(cδ))
≥ cr

log(1/δ)
≥ cε/δ

log(1/δ)
.

Moreover, Corollary 2.2 implies that all the angles occuring in this set are inside the ε-
neighbourhood of {0, π/3, π/2, 2π/3, π} but outside the δ-neighbourhood of {π/3, 2π/3}.
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By fixing a small ε and setting δ = c/ 3
√
n in the above theorem, we obtain the following

corollaries.

Corollary 3.6. A self-similar set K ⊂ Rn can be given such that the dimension of K is
at least

s ≥ c 3
√
n

log n
,

and K does not contain the angle π/3 and 2π/3 (moreover, K does not contain any angle
in the c/ 3

√
n-neighbourhood of π/3 and 2π/3).

So there exists a compact set in Rn of dimension at least c 3√n
logn

that avoids a small

neighbourhood of the angles π/3 and 2π/3. Probably, this result is quite far from being
sharp. However, the following corollary is surprisingly sharp.

Corollary 3.7. For any 0 < δ < 1 there exists a self-similar set K of dimension at
least cδ−1/ log(δ−1) in some Euclidean space such that K does not contain any angle in
(π/3− δ, π/3 + δ) ∪ (2π/3− δ, 2π/3 + δ).

Remark 3.8. The previous result is essentially sharp. It was proved in [3] that if dimK >
Cδ−1 log(δ−1), then K contains an angle α ∈ (π/3 − δ, π/3 + δ) and also an angle α′ ∈
(2π/3− δ, 2π/3 + δ).

Finally, we mention that the self-similar sets K constructed in this paper avoid α even in
the sense that for any A,B,C,D ∈ K with A 6= B and C 6= D we have ∠(A−B,C−D) 6= α
(see the proof of Corollary 2.2).
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