INTERSECTION OF CONTINUA AND RECTIFIABLE CURVES

RICHÁRD BALKA AND VIKTOR HARANGI

Abstract

We prove that for any non-degenerate continuum $K \subseteq \mathbb{R}^{d}$ there exists a rectifiable curve such that its intersection with K has Hausdorff dimension 1. This answers a question of B. Kirchheim.

1. Introduction

A topological space K is called a continuum if it is compact and connected. The following question was asked by B. Kirchheim [4].

Question 1.1. Does there exist a non-degenerate curve (or more generally, a continuum) $K \subseteq \mathbb{R}^{d}$ such that every rectifiable curve intersects K in a set of Hausdorff dimension less than 1 ?

The motivation behind this question was that in [3, Examples (b), p. 208.] Gromov implicitly suggested that such curves exist. In this paper we answer Question 1.1 in the negative.

Theorem 3.4. For any non-degenerate continuum $K \subseteq \mathbb{R}^{d}$ there exists a rectifiable curve such that its intersection with K has Hausdorff dimension 1.

Remark 1.2. Finding a 1 -dimensional intersection is the best we can hope for, since any purely unrectifiable curve K in the plane (e.g., the Koch snowflake curve) has the property that the intersection of K and a rectifiable curve has zero \mathcal{H}^{1} measure.

2. Preliminaries

The diameter and the boundary of a set A are denoted by $\operatorname{diam} A$ and ∂A, respectively. For $A \subseteq \mathbb{R}^{d}$ and $s \geq 0$ the s-dimensional Hausdorff measure is defined as

$$
\begin{aligned}
\mathcal{H}^{s}(A) & =\lim _{\delta \rightarrow 0+} \mathcal{H}_{\delta}^{s}(A), \text { where } \\
\mathcal{H}_{\delta}^{s}(A) & =\inf \left\{\sum_{i=1}^{\infty}\left(\operatorname{diam} A_{i}\right)^{s}: A \subseteq \bigcup_{i=1}^{\infty} A_{i}, \quad \forall i \operatorname{diam} A_{i} \leq \delta\right\} .
\end{aligned}
$$

Then the Hausdorff dimension of A is

$$
\operatorname{dim}_{H} A=\sup \left\{s \geq 0: \mathcal{H}^{s}(A)>0\right\}
$$

2010 Mathematics Subject Classification. 28A78.
Key words and phrases. Continuum, rectifiable curve, Hausdorff dimension.
We gratefully acknowledge the support of the Hungarian Scientific Research Fund grant no. 72655 .

Let $A \subseteq \mathbb{R}^{d}$ be non-empty and bounded, and let $\delta>0$. Set

$$
N(A, \delta)=\min \left\{k: A \subseteq \bigcup_{i=1}^{k} A_{i}, \forall i \operatorname{diam} A_{i} \leq \delta\right\}
$$

The upper Minkowski dimension of A is defined as

$$
\overline{\operatorname{dim}}_{M}(A)=\limsup _{\delta \rightarrow 0+} \frac{\log N(A, \delta)}{-\log \delta}
$$

If $A \subseteq \mathbb{R}^{d}$ is non-empty and bounded, then it follows easily from the above definitions that

$$
\operatorname{dim}_{H} A \leq \overline{\operatorname{dim}}_{M}(A)
$$

For more information on these concepts see [2] or [5].
A continuous map $f:[a, b] \rightarrow \mathbb{R}^{d}$ is called a curve. Its length is defined as

$$
\text { length }(f)=\sup \left\{\sum_{i=1}^{n}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|: n \in \mathbb{N}^{+}, a=x_{0}<\cdots<x_{n}=b\right\}
$$

If length $(f)<\infty$, then f is said to be rectifiable. We say that f is naturally parametrized if for all $x, y \in[a, b], x \leq y$ we have

$$
\text { length }\left(\left.f\right|_{[x, y]}\right)=|x-y|
$$

We simply write $\Gamma=f([a, b])$ instead of f if the parametrization is obvious or not important for us. For every non-degenerate rectifiable curve Γ we have $0<$ $\mathcal{H}^{1}(\Gamma)<\infty$, so $\operatorname{dim}_{H} \Gamma=1$. If $|f(x)-f(y)| \leq|x-y|$ for all $x, y \in[a, b]$, then f is called 1-Lipschitz. Every naturally parametrized curve is clearly 1-Lipschitz.

3. The proof

First we need some lemmas. The following lemma is probably known, but we could not find a reference, so we outline its proof.

Lemma 3.1. If a non-empty bounded set $A \subseteq \mathbb{R}^{d}$ has upper Minkowski dimension less than 1, then a rectifiable curve covers A.
Proof. We can assume that A is compact and $A \subseteq[0,1]^{d}$, since we can take its closure and transform it into the unit cube with a similarity, this does not change the upper Minkowski dimension of the set and the fact whether it can be covered by a rectifiable curve.

For every $n \in \mathbb{N}$ we divide $[0,1]^{d}$ into non-overlapping cubes with edge length 2^{-n} in the natural way, and we denote the cubes that intersect A by

$$
Q_{n, 1}, Q_{n, 2}, \ldots, Q_{n, r_{n}}
$$

where r_{n} is the number of such cubes. As every set with diameter at most 2^{-n} can intersect at most 3^{d} of the above cubes, we obtain $r_{n} \leq 3^{d} N\left(A, 2^{-n}\right)$. Let us fix s such that $\operatorname{dim}_{M}(A)<s<1$. By the definition of upper Minkowski dimension there exists a constant $c_{1} \in \mathbb{R}$ such that for all $n \in \mathbb{N}$

$$
\begin{equation*}
r_{n} \leq c_{1} \cdot 2^{s n} \tag{3.1}
\end{equation*}
$$

Let $n \in \mathbb{N}$ and $i \in\left\{1, \ldots, r_{n}\right\}$ be arbitrarily fixed. Let $P_{n, i}$ be the vertex of $Q_{n, i}$ that is the closest to the origin. If $Q_{n+1, j_{1}}, \ldots, Q_{n+1, j_{m}}$ are the next level cubes contained by $Q_{n, i}$, then consider the broken line

$$
\Gamma_{n, i}=P_{n, i} P_{n+1, j_{1}} P_{n+1, j_{2}} \ldots P_{n+1, j_{m}} P_{n, i}
$$

Thus

$$
\begin{equation*}
\operatorname{length}\left(\Gamma_{n, i}\right) \leq(m+1) \operatorname{diam} Q_{n, i} \leq 2 m \sqrt{d} 2^{-n} \tag{3.2}
\end{equation*}
$$

Let l_{n} be the sum of these lengths for all $i \in\left\{1, \ldots, r_{n}\right\}$. Then (3.2) and (3.1) imply

$$
\begin{equation*}
l_{n} \leq 2 r_{n+1} \sqrt{d} 2^{-n} \leq 2 c_{1} \cdot 2^{s(n+1)} \sqrt{d} 2^{-n}=c_{2} 2^{(s-1) n} \tag{3.3}
\end{equation*}
$$

where $c_{2}=c_{1} \sqrt{d} 2^{s+1}$. We set

$$
L_{n}=\sum_{k=0}^{n} l_{k} \quad \text { and } \quad L=\sum_{k=0}^{\infty} l_{k}
$$

Since $s<1$, (3.3) implies $L<\infty$.
Now we define the rectifiable curve covering A. First we take the broken line $\Gamma_{0}=\Gamma_{0,1}$ with its natural parametrization $g_{0}:\left[0, L_{0}\right] \rightarrow \Gamma_{0}$. Assume that the curves $g_{k}:\left[0, l_{k}\right] \rightarrow \Gamma_{k}$ are already defined for all $k<n$. At every point $P_{n, i}$, $i \in\left\{1, \ldots, r_{n}\right\}$, we insert the broken line $\Gamma_{n, i}$ in Γ_{n-1}, so we obtain a naturally parametrized curve $g_{n}:\left[0, L_{n}\right] \rightarrow \Gamma_{n}$.

For every $n \in \mathbb{N}$ let us define $f_{n}:[0, L] \rightarrow \Gamma_{n}$ such that

$$
f_{n}(x)= \begin{cases}g_{n}(x) & \text { if } x \in\left[0, L_{n}\right] \\ g_{n}\left(L_{n}\right) & \text { if } x \in\left[L_{n}, L\right]\end{cases}
$$

Now we prove that the sequence $\left\langle f_{n}\right\rangle$ uniformly converges. Let us fix $n \in \mathbb{N}$ and $x \in[0, L]$ arbitrarily. As $\sum_{n=0}^{\infty} l_{n}<\infty$, it is enough to prove that $\mid f_{n+1}(x)-$ $f_{n}(x) \mid \leq l_{n+1}$. By construction there exists $y \in[0, L]$ such that $f_{n}(x)=f_{n+1}(y)$ and $|x-y| \leq l_{n+1}$. Since g_{n+1} is naturally parametrized, we obtain that

$$
\left|f_{n+1}(x)-f_{n}(x)\right|=\left|f_{n+1}(x)-f_{n+1}(y)\right| \leq|x-y| \leq l_{n+1}
$$

Therefore $\left\langle f_{n}\right\rangle$ uniformly converges to some $f:[0, L] \rightarrow \mathbb{R}^{d}$. As a uniform limit of 1-Lipschitz functions f is also 1-Lipschitz, thus rectifiable.

It remains to prove that $A \subseteq f([0, L])$. Let $\vec{z} \in A$. We need to show that there is $x \in[0, L]$ such that $f(x)=\vec{z}$. For every $n \in \mathbb{N}$ there exists $i_{n} \in\left\{1, \ldots, r_{n}\right\}$ such that $\vec{z} \in Q_{n, i_{n}}$. Let $x_{n} \in[0, L]$ such that $f_{n}\left(x_{n}\right)=P_{n, i_{n}}$ for all $n \in \mathbb{N}$. By choosing a subsequence we may assume that x_{n} converges to some $x \in[0, L]$. Therefore

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}\left(x_{n}\right)=\lim _{n \rightarrow \infty} P_{n, i_{n}}=\vec{z}
$$

The proof is complete.
The next lemma is [1, Lemma 6.1.25].
Lemma 3.2. If A is a closed subspace of a continuum X such that $\emptyset \neq A \neq X$, then for every connected component C of A we have $C \cap \partial A \neq \emptyset$.

We also need the following technical lemma.
Lemma 3.3. Suppose that $K \subseteq \mathbb{R}^{d}$ is a continuum contained by a unit cube Q and K has a point on each of two opposite sides of Q. Then for any positive integer N we can find N pairwise non-overlapping cubes Q_{1}, \ldots, Q_{N} with edge length $\frac{1}{N}$ such that for each $i \in\{1, \ldots, N\}$ there exists a continuum $K_{i} \subseteq K \cap Q_{i}$ with the property that K_{i} has a point on each of two opposite sides of Q_{i}.

Proof. Let $N \in \mathbb{N}^{+}$be fixed. Set $S_{0}=\{0\} \times[0,1]^{d-1}$ and for all $i \in\{1, \ldots, N\}$ consider

$$
S_{i}=\{i / N\} \times[0,1]^{d-1} \quad \text { and } \quad T_{i}=[(i-1) / N, i / N] \times[0,1]^{d-1} .
$$

We may assume that $Q=[0,1]^{d}$ and that the two opposite sides intersecting K are S_{0} and S_{N}. Let $\vec{x} \in K \cap S_{0}$ and $\vec{y} \in K \cap S_{N}$.

Now we prove that for each $i \in\{1, \ldots, N\}$ there is a continuum $C_{i} \subseteq K \cap T_{i}$ such that $C_{i} \cap S_{i-1} \neq \emptyset$ and $C_{i} \cap S_{i} \neq \emptyset$. Let C_{1} be the component of $K \cap T_{1}$ containing \vec{x}. Applying Lemma 3.2 for $X=K, A=K \cap T_{1}$, and $C=C_{1}$ yields that $C_{1} \cap S_{1} \neq \emptyset$. Let C_{2}^{\prime} be the component of $K \cap\left(T_{2} \cup \cdots \cup T_{N}\right)$ containing \vec{y}. Similarly as above, we obtain $C_{2}^{\prime} \cap S_{1} \neq \emptyset$. If we continue this process, we get the required continua C_{2}, \ldots, C_{N}.

Finally, for each $i \in\{1, \ldots, N\}$ we construct a cube $Q_{i} \subseteq T_{i}$ with edge length $\frac{1}{N}$ and a continuum $K_{i} \subseteq Q_{i}$ such that K_{i} has a point on each of two opposite sides of Q_{i}. Clearly, the cubes Q_{i} will be pairwise non-overlapping, and it is enough to construct Q_{1} and K_{1} (one can get Q_{i}, K_{i} similarly). Let us consider the standard basis of $\mathbb{R}^{d}: \vec{e}_{1}=(1,0, \ldots, 0), \ldots, \vec{e}_{d}=(0,0, \ldots, 1)$. Set $A_{1}=C_{1}, V_{1}=\{0\} \times \mathbb{R}^{d-1}$, $W_{1}=\{1 / N\} \times \mathbb{R}^{d-1}, Z_{1}=[0,1 / N] \times \mathbb{R}^{d-1}$, and $m(1)=1$. Then the definitions yield that A_{1} has a point on both $V_{m(1)}$ and $W_{m(1)}$. Let $j \in\{2, \ldots, d\}$ and assume that $A_{k}, V_{k}, W_{k}, Z_{k}$, and $m(k)$ are already defined for all $k<j$ such that A_{k} has a point on both $V_{m(k)}$ and $W_{m(k)}$. Let $\vec{x}_{j} \in A_{j-1}$ be a point which has minimal j th coordinate, and let V_{j} be the affine hyperplane that is orthogonal to \vec{e}_{j} and contains \vec{x}_{j}. Set $W_{j}=V_{j}+\frac{1}{N} \vec{e}_{j}$, and let Z_{j} be the closed strip between V_{j} and W_{j}. If $A_{j-1} \subseteq Z_{j}$ then let $A_{j}=A_{j-1}$ and $m(j)=m(j-1)$. If $A_{j-1} \nsubseteq Z_{j}$ then let A_{j} be the component of \vec{x}_{j} in $A_{j-1} \cap Z_{j}$ and $m(j)=j$, in this case Lemma 3.2 yields $A_{j} \cap W_{j} \neq \emptyset$. Thus A_{j} has a point on both $V_{m(j)}$ and $W_{m(j)}$. Let $Q_{1}=\bigcap_{j=1}^{d} Z_{j}$ and $K_{1}=A_{d}$. Then $Q_{1} \subseteq S_{1}$ is a cube with edge length $\frac{1}{N}$ and $K_{1} \subseteq Q_{1}$ is a continuum. As K_{1} has a point on both $V_{m(d)}$ and $W_{m(d)}$, we obtain that K_{1} has a point on each of two opposite sides of Q_{1}. The proof is complete.

Now we are ready to prove Theorem 3.4.
Theorem 3.4. For any non-degenerate continuum $K \subseteq \mathbb{R}^{d}$ there exists a rectifiable curve such that its intersection with K has Hausdorff dimension 1.

Proof. By considering a similar copy of K we may assume that K is contained by a unit cube Q and K has a point on each of two opposite sides of Q.

Let $\varepsilon>0$ be arbitrary. First we prove the weaker result that there exists $A \subseteq K$ such that $1-\varepsilon \leq \operatorname{dim}_{H} A=\operatorname{dim}_{M}(A)<1$. By Lemma $3.1 A$ is covered by a rectifiable curve. Let us fix an integer $N \geq 2$ for which $s:=\frac{\log (N-1)}{\log N} \geq 1-\varepsilon$. We construct $A \subseteq K$ such that $\operatorname{dim}_{H} A=\overline{\operatorname{dim}}_{M}(A)=s$. Set $\mathcal{I}_{n}=\{1, \ldots, N-1\}^{n}$ for every $n \in \mathbb{N}^{+}$. Iterating Lemma 3.3 implies that for all $n \in \mathbb{N}^{+}$and $\left(i_{1}, \ldots, i_{n}\right) \in \mathcal{I}_{n}$ there are cubes $Q_{i_{1} \ldots i_{n}}$ in Q with edge length $\frac{1}{N^{n}}$ such that $Q_{i_{1} \ldots i_{n}} \subseteq Q_{i_{1} \ldots i_{n-1}}$, and there are continua $K_{i_{1} \ldots i_{n}} \subseteq K$ such that $K_{i_{1} \ldots i_{n}} \subseteq Q_{i_{1} \ldots i_{n}} \cap K_{i_{1} \ldots i_{n-1}}$ and $K_{i_{1} \ldots i_{n}}$ has a point on each of two opposite sides of $Q_{i_{1} \ldots i_{n}}$. Set

$$
A_{n}=\bigcup_{i_{1}=1}^{N-1} \cdots \bigcup_{i_{n}=1}^{N-1} K_{i_{1} \ldots i_{n}}
$$

and let

$$
A=\bigcap_{n=1}^{\infty} A_{n}
$$

Clearly, $A \subseteq K$ is compact.
On the one hand, as $A \subseteq A_{n}$ and A_{n} is covered by $(N-1)^{n}$ many cubes of edge length $\frac{1}{N^{n}}$, we obtain that $N\left(A_{n}, \sqrt{d} / N^{n}\right) \leq(N-1)^{n}$ for all $n \in \mathbb{N}^{+}$. Therefore $\overline{\operatorname{dim}}_{M}(A) \leq \frac{\log (N-1)}{\log N}=s$.

On the other hand, we prove that $\mathcal{H}^{s}(A)>0$. Assume that $A \subseteq \bigcup_{j=1}^{\infty} U_{j}$, it is enough to prove that $\sum_{j=1}^{\infty}\left(\operatorname{diam} U_{j}\right)^{s} \geq \frac{1}{2^{d}(N-1)}$. Clearly, we may assume that U_{j} is a non-empty open set with $\operatorname{diam} U_{j}<1$ for each j, and the compactness of A implies that there is a finite subcover $A \subseteq \bigcup_{j=1}^{k} U_{j}$. Let us fix $n_{0} \in \mathbb{N}^{+}$such that $\frac{1}{N^{n_{0}}}<\min _{1 \leq j \leq k} \operatorname{diam} U_{j}$. For $j \in\{1, \ldots, k\}$ let

$$
t_{j}=\#\left\{\left(i_{1}, \ldots, i_{n_{0}}\right) \in \mathcal{I}_{n_{0}}: U_{j} \cap K_{i_{1} \ldots i_{n_{0}}} \neq \emptyset\right\}
$$

Since $A \subseteq \bigcup_{j=1}^{k} U_{j}$, we have

$$
\begin{equation*}
\sum_{j=1}^{k} t_{j} \geq(N-1)^{n_{0}} \tag{3.4}
\end{equation*}
$$

Now we show that for all $j \in\{1, \ldots, k\}$

$$
\begin{equation*}
\left(\operatorname{diam} U_{j}\right)^{s} \geq \frac{t_{j}}{2^{d}(N-1)^{n_{0}+1}} \tag{3.5}
\end{equation*}
$$

Let us fix $j \in\{1, \ldots, k\}$. There exists $0 \leq m<n_{0}$ such that $\frac{1}{N^{m+1}} \leq \operatorname{diam} U_{j}<$ $\frac{1}{N^{m}}$. Clearly, the number of cubes $Q_{i_{1} \ldots i_{m}}$ at level m that intersect U_{j} is at most 2^{d}. Therefore $t_{j} \leq 2^{d}(N-1)^{n_{0}-m}$. On the other hand, $\operatorname{diam} U_{j} \geq \frac{1}{N^{m+1}}$ implies $\left(\operatorname{diam} U_{j}\right)^{s} \geq \frac{1}{(N-1)^{m+1}}$, and (3.5) follows. By (3.4) and (3.5) we obtain

$$
\sum_{j=1}^{k}\left(\operatorname{diam} U_{j}\right)^{s} \geq \sum_{j=1}^{k} \frac{t_{j}}{2^{d}(N-1)^{n_{0}+1}} \geq \frac{1}{2^{d}(N-1)}
$$

Hence $\mathcal{H}^{s}(A)>0$. Therefore $\operatorname{dim}_{H} A \geq s$, so $s \leq \operatorname{dim}_{H} A \leq \overline{\operatorname{dim}}_{M}(A) \leq s$. Thus $1-\varepsilon \leq \operatorname{dim}_{H} A=\overline{\operatorname{dim}}_{M}(A)<1$.

Now we are in a position to prove that there exists a rectifiable curve Γ with $\operatorname{dim}_{H}(\Gamma \cap K)=1$. Pick an arbitrary point $\vec{x} \in K$ and let K_{n} be the intersection of K and the closed ball of radius $1 / 2^{n}$ centered at \vec{x}. Let C_{n} denote the component of K_{n} containing \vec{x}. Since C_{n} is a non-degenerate continuum by Lemma 3.2, we know that there exists $A_{n} \subseteq C_{n}$ such that $1-\frac{1}{n} \leq \operatorname{dim}_{H} A_{n}=\operatorname{dim}_{M}(A)<1$. Therefore Lemma 3.1 implies that there exist rectifiable curves Γ_{n} covering A_{n}. We may assume that the endpoints of Γ_{n} are in A_{n}. We can also assume that the length of Γ_{n} is at most $1 / 2^{n}$. (Otherwise we split up Γ_{n} into finitely many parts, each having length at most $1 / 2^{n}$; then one of these parts intersects A_{n} in a set of Hausdorff dimension at least $1-\frac{1}{n}$.) Let us concatenate the curves Γ_{n} with line segments. Then the full length of the line segments is at most $2 \sum_{n=1}^{\infty} \frac{1}{2^{n}}=2$, the full length of the curves Γ_{n} is at most $\sum_{n=1}^{\infty} \frac{1}{2^{n}}=1$, so we get a rectifiable curve Γ that covers $\bigcup_{n=1}^{\infty} A_{n}$. As $\operatorname{dim}_{H}\left(\bigcup_{n=1}^{\infty} A_{n}\right)=1$, the intersection $\Gamma \cap K$ has Hausdorff dimension 1. The proof is complete.

References

[1] R. Engelking, General topology, Revised and completed edition, Heldermann Verlag, 1989.
[2] K. Falconer, Fractal geometry: Mathematical foundations and applications, Second Edition, John Wiley \& Sons, 2003.
[3] M. Gromov, Partial differential relations, Springer-Verlag, 1986.
[4] B. Kirchheim, private communication, 2011.
[5] P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics No. 44, Cambridge University Press, 1995.

Alfréd Rényi Institute of Mathematics, PO Box 127, 1364 Budapest, Hungary
E-mail address: balka.richard@renyi.mta.hu
Alfréd Rényi Institute of Mathematics, PO Box 127, 1364 Budapest, Hungary
E-mail address: harangi.viktor@renyi.mta.hu

