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Abstract. We prove that every 3-regular, n-vertex simple graph with sufficiently large
girth contains an independent set of size at least 0.4361n. (The best known bound is
0.4352n.) In fact, computer simulation suggests that the bound our method provides is
about 0.438n.

Our method uses invariant Gaussian processes on the d-regular tree that satisfy the
eigenvector equation at each vertex for a certain eigenvalue λ. We show that such processes
can be approximated by i.i.d. factors provided that |λ| ≤ 2

√
d− 1. We then use these

approximations for λ = −2
√
d− 1 to produce factor of i.i.d. independent sets on regular

trees.

1. Introduction

An independent set is a set of vertices in a graph, no two of which are adjacent. The
independence ratio of a graph is the size of its largest independent set divided by the total
number of vertices. Let d ≥ 3 be an integer and suppose that G is a d-regular finite graph
with sufficiently large girth, that is, G does not contain cycles shorter than a sufficiently
large given length. In other words, G locally looks like a d-regular tree. What can we say
about the independence ratio of G?

In a regular (infinite) tree every other vertex can be chosen, so one is tempted to say
that the independence ratio should tend to 1/2 when the girth goes to infinity. This is
not the case, however: Bollobás [2] showed that (uniform) random d-regular graphs have
essentially large girth (i.e., the number of short cycles is small) and their independence
ratios are bounded away from 1/2 with high probability. Asymptotically (as d→∞) the
independence ratio of the random d-regular graph is 2(log d)/d (the lower bound is due
to Frieze and  Luczak [3]). The best known upper bound for random 3-regular graphs is
0.45537 due to McKay [10], who sharpened [2].

Shearer [11] showed that for any triangle-free graph with average degree d the indepen-
dence ratio is at least

d log d− d+ 1

(d− 1)2
.

For regular graphs of large girth, Shearer himself found an improvement [12]. Lauer and
Wolmard further improved that bound for d ≥ 7 by analyzing a simple greedy algorithm
[9]. All of these bounds are the same asymptotically: (log d)/d. For small values of d more
sophisticated algorithms have been analyzed using computer-assisted proofs: in his thesis
Hoppen presents an approach that outdoes the above-mentioned bounds when d ≤ 10 [7,
Table 5.3.1]. For d = 3 Kardoš, Král and Volec improved Hoppen’s method and obtained
the bound 0.4352 [8]. Compare this to McKay’s upper bound 0.45537.
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The above lower bounds are based on local improvements of the standard greedy algo-
rithm. Our main theorem is based on a different approach: we use Gaussian wave functions
to find independent sets.

Theorem 1. Every 3-regular graph with sufficiently large girth has independence ratio at
least 0.4361.

A related problem is finding induced bipartite subgraphs with a lot of vertices. (Equiva-
lently, we are looking for two disjoint independent sets with large total size.) This problem
was studied for random 3-regular graphs in [6, 5].

Theorem 2. Every 3-regular graph with sufficiently large girth has an induced subgraph
that is bipartite and that contains at least a

1− 3

4π
arccos

(
5

6

)
> 0.86

fraction of the vertices.

To illustrate our strategy for proving Theorem 1, suppose that there is a real number
assigned to each vertex of G, called the value of the vertex. We always get an independent
set by choosing those vertices having larger values than each of their neighbors. If we assign
these values to the vertices in some random manner, then we get a random independent
set. If the expected size of this random independent set can be computed, then it gives a
lower bound on the independence ratio. In many cases, the probability that a given vertex
is chosen is the same for all vertices, in which case this probability itself is a lower bound.

The idea is to consider a random assignment that is almost an eigenvector (with high
probability) with some negative eigenvalue λ. Then we expect many of the vertices with
positive values to be chosen. The spectrum of the d-regular tree is [−2

√
d− 1, 2

√
d− 1],

so it is reasonable to expect that we can find such a random assignment for λ = −2
√
d− 1.

As we will see, the approach described above can indeed be carried out, and it produces a
lower bound

1

2
− 3

4π
arccos

(
1 + 2

√
2

4

)
≈ 0.4298

in the d = 3 case. This natural bound is already sharper than all previous bounds that are
not computer-assisted.

Using the same random assignment but a more sophisticated way to choose the vertices
for our independent set provides a better bound. We fix some threshold τ ∈ R, and we
only keep those vertices that are below this threshold. We choose τ in such a way that the
components of the remaining vertices are small with high probability. We omit the large
components and we choose an independent set from each of the small components. (Note
that the small components are all trees provided that the girth of the original graph is large
enough. Since trees are bipartite, they have an independent set containing at least half of
the vertices.) We simulated this random procedure on computer and the probability that
a given vertex is in the independent set seems to be above 0.438 in the 3-regular case. The
best bound we could obtain with a rigorous proof is 0.4361. The proof is computer-assisted
in the sense that we used a computer to find certain numerical integrals.

If one wants to avoid using computers, then one can set τ = 0 and use simple estimates
to obtain a bound as good as 0.43. (The best previous bound obtained without the use of
computers is 0.4139 and is due to Shearer, see [9, Table 1].) Note that one can also choose
an independent set from the vertices above the threshold in the same manner. This other
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independent set is clearly disjoint from the first one and has the same expected size when
τ = 0. This is how Theorem 2 will be obtained.

Random processes on the regular tree. Instead of working on finite graphs with large
girth, it will be more convenient for us to consider the regular (infinite) tree and look for
independent sets on this tree that are i.i.d. factors.

Let Td denote the d-regular tree for some positive integer d ≥ 3, V (Td) is the vertex
set, and Aut(Td) is the group of graph automorphisms of Td. Suppose that we have
independent standard normal random variables Zv assigned to each vertex v ∈ V (Td). We
call an instance of an assignment a configuration. A factor of i.i.d. independent set is a
random independent set that is obtained as a measurable function of the configuration
and that commutes with the natural action of Aut(Td). By a factor of i.i.d. process we
mean random variables Xv, v ∈ V (Td) that are all obtained as measurable functions of
the random variables Zv and that are Aut(Td)-invariant (that is, they commute with the
natural action of Aut(Td)). Actually, in this paper we will only consider linear factor of
i.i.d. processes defined as follows.

Definition 1.1. We say that a process Xv, v ∈ V (Td) is a linear factor of the i.i.d. process
Zv if there exist real numbers α0, α1, . . . such that

(1) Xv =
∑

u∈V (Td)

αd(v,u)Zu =
∞∑
k=0

∑
u:d(v,u)=k

αkZu,

where d(v, u) denotes the distance between the vertices v and u in Td. Note that the infinite
sum in (1) converges almost surely if and only if α2

0 +
∑∞

k=1 d(d− 1)k−1α2
k <∞.

These linear factors are clearly Aut(Td)-invariant. Furthermore, the random variable Xv

defined in (1) is always a centered Gaussian.

Definition 1.2. We call a collection of random variables Xv, v ∈ V (Td) a Gaussian process
on Td if they are jointly Gaussian and each Xv is centered. (Random variables are said to
be jointly Gaussian if any finite linear combination of them is Gaussian.)

Furthermore, we say that a Gaussian process Xv is invariant if it is Aut(Td)-invariant,
that is, for arbitrary graph automorphism Φ : V (Td)→ V (Td) of Td the joint distribution
of the Gaussian process XΦ(v) is the same as that of the original process.

The following invariant processes will be of special interest for us.

Theorem 3. For any real number λ with |λ| ≤ d there exists a non-trivial invariant
Gaussian process Xv on Td that satisfies the eigenvector equation with eigenvalue λ, i.e.,
(with probability 1) for every vertex v it holds that∑

u∈N(v)

Xu = λXv,

where N(u) denotes the set of neighbors of v.
The joint distribution of such a process is unique under the additional condition that the

variance of Xv is 1. We will refer to this (essentially unique) process as the Gaussian wave
function with eigenvalue λ.

These Gaussian wave functions can be approximated by linear factor of i.i.d. processes
provided that |λ| ≤ 2

√
d− 1.
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Theorem 4. For any real number λ with |λ| ≤ 2
√
d− 1 there exist linear factor of i.i.d.

processes that converge in distribution to the Gaussian wave function corresponding to λ.

The Gaussian wave function for negative λ has negative correlations for neighbors. The
set where the process takes values below a threshold τ is a percolation process, which –
with the right choice of parameters – has high density but no infinite clusters. We will use
this percolation to construct independent sets. Our first step, of independent interest, is
to bound the critical threshold for this percolation.

Theorem 5. Let Xv, v ∈ T3 be the Gaussian wave function with eigenvalue λ = −2
√

2,
and consider the percolation Sτ = {v ∈ V (Td) : Xv ≤ τ}. If τ ≤ 0.086, then each cluster
of Sτ is finite almost surely. (Note that for τ = 0.086 the density of the percolation is above
0.534, yet the clusters are finite almost surely.)

Asymptotically, for large values of d, Gamarnik and Sudan [4] have recently showed that
factor of i.i.d. processes can only produce independent sets with size at most 1/2 + 1/

√
8

times the largest in random regular graphs. This means that upper bounds coming from
random regular graphs (such as the Bollobás and McKay bounds) cannot be matched by
factor of i.i.d. algorithms.

For d = 3, it is an open problem whether the best asymptotic independence ratio can
be achieved with factor-of-i.i.d. algorithms such as ours.

The rest of the paper is organized as follows: in Section 2 we prove Theorems 3 and 5,
and derive other useful properties of Gaussian wave functions, in Section 3 we give a proof
for Theorem 4, and in Section 4 we show how one can use these random processes to find
large independent sets.

2. Gaussian wave functions

We call the random variables Xv, v ∈ V (Td) a Gaussian process if they are jointly
Gaussian and each Xv is centered (see Definition 1.2). The joint distribution is completely
determined by the covariances cov(Xu, Xv), u, v ∈ V (Td). A Gaussian process with pre-
scribed covariances exists if and only if the corresponding infinite “covariance matrix” is
positive semidefinite.

From this point on, all the Gaussian processes considered will be Aut(Td)-invariant. For
an invariant Gaussian process Xv the covariance cov(Xu, Xv) clearly depends only on the
distance d(u, v) of u and v. (The distance between the vertices u, v is the length of the
shortest path connecting u and v in Td.) Let us denote the covariance corresponding to
distance k by σk. So an invariant Gaussian process is determined (in distribution) by the
the sequence σ0, σ1, . . . of covariances.

Theorem 3 claims that for any |λ| ≤ d there exists an invariant Gaussian process that
satisfies the eigenvector equation

∑
u∈N(v) Xu = λXv for each vertex v. What would be the

covariance sequence of such a Gaussian wave function? Let v1, . . . , vd denote the neighbors
of an arbitrary vertex v0. Then

0 = cov (Xv0 , 0) = cov (Xv0 , Xv1 + · · ·+Xvd − λXv0) = dσ1 − λσ0.

Also, if u is at distance k from v0, then it has distance k − 1 from one of the neighbors
v1, . . . , vd, and has distance k + 1 from the remaining d− 1 neighbors of v0. Therefore

0 = cov (Xu, 0) = cov (Xu, Xv1 + · · ·+Xvd − λXv0) = (d− 1)σk+1 + σk−1 − λσk.
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After multiplying our process with a constant we may assume that the variance of Xv is
1, that is, σ0 = 1. So the covariances satisfy the following linear recurrence relation:

(2) σ0 = 1; dσ1 − λσ0 = 0; (d− 1)σk+1 − λσk + σk−1 = 0, k ≥ 1.

There is a unique sequence σk satisfying the above recurrence. Therefore to prove the
existence of the Gaussian wave function we only need to check that the corresponding
infinite matrix is positive semidefinite. This does not seem to be a straightforward task,
though, so we take another approach instead, where we recursively consruct the Gaussian
wave function. (This approach will also yield some interesting and useful properties of
Gaussian wave functions, see Remark 2.2 and 2.3.)

Remark 2.1. The case |λ| ≤ 2
√
d− 1 also follows from the results presented in the next

section, where we construct factor of i.i.d. processes, the covariance matrices of which
converge to the “covariance matrix” of the (supposed) Gaussian wave function. As the
limit of positive semidefinite matrices, this “covariance matrix” is positive semidefinite,
too, and thus the Gaussian wave function indeed exists.

Proof of Theorem 3. Let σk be the solution of the recurrence relation (2), in particular,

σ0 = 1; σ1 =
λ

d
; σ2 =

λ2 − d
d(d− 1)

.

We need to find a Gaussian process Xv, v ∈ V (Td) such that

(3) cov(Xu, Xv) = σd(u,v)

holds for all u, v ∈ V (Td).
We will define the random variables Xv recursively on larger and larger connected sub-

graphs of Td. Suppose that the random variables Xv are already defined for v ∈ S such
that (3) is satisfied for any u, v ∈ S, where S is a (finite) set of vertices for which the
induced subgraph Td[S] is connected. Let v0 be a leaf (i.e., a vertex with degree 1) in
Td[S], vd denotes the unique neighbor of v0 in Td[S], and v1, . . . , vd−1 are the remaining
neighbors in Td. We now define the random variables Xv1 , . . . , Xvd−1

. Let (Y1, . . . , Yd−1)
be a multivariate Gaussian that is independent from Xv, v ∈ S and that has a prescribed
covariance matrix that we will specify later. Set

Xvi
def
=

λ

d− 1
Xv0 −

1

d− 1
Xvd + Yi , i = 1, . . . , d− 1.

For 1 ≤ i ≤ d− 1 we have

cov (Xvi , Xv0) =
λ

d− 1
− 1

d− 1
σ1 = σ1,

and if u ∈ S \ {v0} is at distance k ≥ 1 from x0, then

cov (Xvi , Xu) =
λ

d− 1
σk −

1

d− 1
σk−1 = σk+1.

We also need that

(4) var (Xvi) = σ0 and cov
(
Xvi , Xvj

)
= σ2, whenever 1 ≤ i, j ≤ d− 1, i 6= j.
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Since

var (Xvi) =

(
λ

d− 1

)2

+

(
1

d− 1

)2

− 2λ

(d− 1)2
σ1 + var(Yi) and

cov
(
Xvi , Xvj

)
=

(
λ

d− 1

)2

+

(
1

d− 1

)2

− 2λ

(d− 1)2
σ1 + cov(Yi, Yj),

we can set var(Yi) and cov(Yi, Yj) such that (4) is satisfied, namely let

var(Yi) = a
def
=

(d− 2)(d2 − λ2)

d(d− 1)2
and cov(Yi, Yj) = b

def
=
−(d2 − λ2)

d(d− 1)2
.

We still have to show that there exist Gaussians Y1, . . . , Yd−1 with the above covariances.
The corresponding (d− 1)× (d− 1) covariance matrix would have a’s in the main diagonal
and b’s everywhere else. The eigenvalues of this matrix are a + (d − 2)b and a − b (with
a− b having multiplicity d− 2). Therefore the matrix is positive semidefinite if a ≥ b and
a ≥ −(d − 2)b. It is easy to check that these inequalities hold when |λ| ≤ d. (In fact,
a = −(d− 2)b, so the covariance matrix is singular, which means that there is some linear
dependence between Y1, . . . , Yd−1. Actually, this linear dependence is Y1 + · · ·+ Yd−1 = 0,
and that is why the eigenvector equation Xv1 + · · ·+Xvd = λXv0 holds.)

So the random variables Xv are now defined on the larger set S ′ = S ∪ {v1, . . . , vd−1}
such that (3) is satisfied for any u, v ∈ S ′. Since(

1 σ1

σ1 1

)
is positive semidefinite for |λ| ≤ d, we can start with a set S containing two adjacent
vertices, and then in each step we can add the remaining d− 1 vertices of a leaf to S. The
statement then follows from the Kolmogorov extension theorem. �

Remark 2.2 (Markov field property). There is an important consequence of the proof
above, which we will make use of when we will be computing the probability of certain
configurations for a particular Gaussian wave function in Section 4. Let u and v be adjacent
vertices in Td. They cut Td (and thus the Gaussian wave function on it) into two parts.
Our proof yields that the two parts of the process are independent under the condition
Xu = xu;Xv = xv for any real numbers xu, xv.

Remark 2.3. If d = 3 and λ = −2
√
d− 1 = −2

√
2, then we have Y2 = −Y1 in the above

proof with var(Y1) = a = 1/12. So we can express Xv1 and Xv2 with the standard Gaussian
Z = 2

√
3Y1 as follows:

Xv1 = −
√

2Xv0 −
1

2
Xv3 +

1

2
√

3
Z and

Xv2 = −
√

2Xv0 −
1

2
Xv3 −

1

2
√

3
Z.

Note that Z is independent from the random variables Xv, v ∈ S, in particular, it is
independent from Xv0 , Xv3 .

2.1. Percolation corresponding to Gaussian wave functions. Let Xv, v ∈ V (Td) be
some fixed invariant process on Td. For any τ ∈ R we define

Sτ
def
= {v ∈ V (Td) : Xv ≤ τ} ,
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that is, we throw away the vertices above some threshold τ . (If the random variables Xv

are independent, then we get the Bernoulli site percolation. Otherwise Sτ is a dependent
percolation.) One very natural question about this random set Sτ is whether its components
are finite almost surely or not. Clearly, there exists a critical threshold τc ∈ [−∞,∞] such
that for τ < τc the component of any given vertex is finite almost surely, while if τ > τc,
then any given vertex is in an infinite component with some positive probability.

First we explain why it would be extremely useful for us to determine this critical
threshold (or bound it from below). Let τ be below the critical threshold τc and let Iτ
be the “largest” independent set contained by Sτ . More precisely, we choose the largest
independent set in each of the (finite) components of Sτ and consider their union. If the
largest independent set is not unique, then we choose one in some invariant way. This way
we get an invariant independent set Id. (Moreover, if Xv can be approximated by i.i.d.
factors, then so is Id.) Clearly, the larger τ is, the larger the independent set we get. So
we want to pick τ close to the critical threshold.

The next lemma provides a sufficient condition for the components to be finite in the
case when our process Xv is a Gaussian wave function. Let us fix a path in Td containing
m + 2 vertices for some positive integer m and fix the values assigned to the first and
second vertex: x and y, respectively. The sufficient condition is roughly the following: for
any x, y ≤ τ , the conditional probability of the event that the random values assigned to
the remaining m nodes are also below τ is less than 1/(d − 1)m. In fact, the only thing
that we will use about Gaussian wave functions is the Markov field property pointed out
in Remark 2.2.

Lemma 2.4. Let Xv, v ∈ Td be a Gaussian wave function on Td and let v−1, v0, v1, . . . , vm
be any fixed path in Td containing m+ 2 vertices for some positive integer m. Suppose that
there exists a real number c < 1/(d− 1)m such that

P
(
Xvi ≤ τ , 1 ≤ i ≤ m|Xv−1 = xv−1 ;Xv0 = xv0

)
< c

holds for any real numbers xv−1 , xv0 ≤ τ . Then each component of

Sτ = {v ∈ V (Td) : Xv ≤ τ} ⊂ V (Td)

is finite almost surely.

Proof. Let u be an arbitrary vertex and let us consider the component of u in Sτ . Let
s be any positive integer. We want to count the number of vertices in the component
at distance sm + 1 from u. The number of such vertices in Td is d(d − 1)sm. For any
such vertex w the path from u to w can be split into s paths, each having m + 2 vertices
and each overlapping with the previous and the next one on two vertices. The Gaussian
wave function on such a path depends on the previous pathes only through the first two
(overlapping) vertices of the path (see Remark 2.2). Using this fact and the assumption of
the lemma, one can conclude that the probability that w is in the component is less than
cs. Consequently, the expected number of vertices in the component at distance sm + 1
from u is at most d(d − 1)smcs, which is exponentially small in s. Thus, by Markov’s
inequality, the probability that the component has at least one vertex at distance sm + 1
is exponentially small, too. It follows that each component must be finite with probability
1. �

Now we will use the above lemma to give a lower bound for the critical threshold in the
case d = 3, λ = −2

√
2.
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Proof of Theorem 5. Let Xv, v ∈ T3 be the Gaussian wave function with eigenvalue λ =
−2
√

2. We need to prove that Sτ has finite components almost surely for τ = 0.086. We
will use Lemma 2.4 with m = 2. Let us fix a path containing four vertices of T3, we denote
the random variables assigned to the first, second, third, and fourth vertex of the path by
X, Y , U , and V , respectively. Let x, y be arbitrary real numbers not more than τ . From
now on, every event and probabilitiy will be meant under the condition X = x;Y = y.
According to Remark 2.3 there exist independent standard normal random variables Z1, Z2

such that

U = −
√

2y − 1

2
x+

1

2
√

3
Z1;

V = −
√

2U − 1

2
y +

1

2
√

3
Z2 =

3

2
y +

1√
2
x− 1√

6
Z1 +

1

2
√

3
Z2.

Our goal is to prove that the probability of U ≤ τ ;V ≤ τ is less than 1/4 for any fixed
x, y ≤ τ . If we increase y by some positive ∆, and decrease x by 2

√
2∆ at the same

time, then U does not change, while V gets smaller, and thus the probability in question
increases. Thus setting y equal to τ and changing x accordingly always yield a higher
probability. So from now on we will assume that y = τ . Then

U ≤ τ ⇔ Z1 ≤
√

3x+ 2
√

6τ + 2
√

3τ ;

V ≤ τ ⇔ −Z1 +
1√
2
Z2 ≤ −

√
3x−

√
3√
2
τ.

We notice that the sum of the right hand sides does not depend on x:

a
def
= τ

(
2
√

6 + 2
√

3−
√

3√
2

)
.

Therefore we have to maximize the following probability in d1:

P (Z1 ≤ d1;Z2/q ≤ Z1 + a− d1) , where q =
√

2.

This can be expressed as a two-dimensional integral:

(5) f(d1)
def
=

∫ d1

−∞

∫ q(z1+a−d1)

−∞

1

2π
exp

(
−z

2
1 + z2

2

2

)
dz2 dz1.

To find the maximum of the function f(d1), we take its derivative, which can be expressed
using the cumulative distribution function Φ of the standard normal distribution:

f ′(d1) =
1√
2π

exp

(
−d2

1

2

)
Φ(qa)−

√
1 + q2

√
2πq

exp

(
−d2

2

2

)
Φ
(√

1 + q2a− d2/q
)
,

where d2 =
q√

1 + q2
(a− d1).

The derivative has a unique root, belonging to the maximum of f . Solving f ′(d1) = 0
numerically (d1 ≈ 0.555487), then computing the integral (5) (≈ 0.249958) shows that
max f < 1/4 as claimed. (Both finding the root of the derivative and computing the
integral numerically are easy to do, and max f < 1/4 can be made rigorous using simple
error bounds.) �
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3. Approximation with factor of i.i.d. processes

Our goal in this section is to prove Theorem 4: there exist linear factor of i.i.d. processes
approximating (in distribution) the Gaussian wave function with eigenvalue λ provided
that |λ| ≤ 2

√
d− 1. This will follow easily from the next lemma.

Lemma 3.1. Let |λ| ≤ 2
√
d− 1 be fixed. For a sequence of real numbers α0, α1, . . . we

define the sequence δ0, δ1, . . . as

(6) δ0
def
= dα1 − λα0; δk

def
= (d− 1)αk+1 − λαk + αk−1, k ≥ 1.

Then for any ε > 0 there exists a sequence αk such that

α2
0 +

∑
k≥1

d(d− 1)k−1α2
k = 1 and δ2

0 +
∑
k≥1

d(d− 1)k−1δ2
k < ε.

We can clearly assume that only finitely many αk are nonzero.

Remark 3.2. We can think of such sequences αk as invariant approximate eigenvectors on
Td. Let us fix a root of Td and write αk on vertices at distance k from the root. Then the
vector f ∈ `2(V (Td)) obtained is spherically symmetric around the root (i.e., f is invariant
under automorphisms fixing the root). Furthermore, ‖f‖2 = α2

0 +
∑

k≥1 d(d− 1)k−1α2
k.

As for the sequence δk, it corresponds to the vector ATdf − λf ∈ `2(V (Td)), where ATd
denotes the adjacency operator of Td. Therefore ‖ATdf − λf‖2 = δ2

0 +
∑

k≥1 d(d− 1)k−1δ2
k.

So the real content of the above lemma is that for any ε > 0 there exists a spherically
symmetric vector f ∈ `2(V (Td)) such that ‖f‖ = 1 and ‖ATdf − λf‖ < ε.

In the best scenario δk = 0 would hold for each k, that is, αk would satisfy the following
linear recurrence:

(7) dα1 − λα0 = 0; (d− 1)αk+1 − λαk + αk−1 = 0, k ≥ 1.

However, for a non-trivial solution αk of the above recurrence we always have α2
0 +∑

k≥1 d(d − 1)k−1α2
k = ∞. This follows from the fact that the point spectrum of ATd

is empty.

First we show how Theorem 4 follows from the above lemma.

Proof of Theorem 4. Let Zv, v ∈ V (Td) be independent standard normal random variables.
Let ε > 0 and let αk as in Lemma 3.1. Let Xv be the linear factor of Zv with coefficients
αk as in (1). Then

var(Xv) = α2
0 +

∑
k≥1

d(d− 1)k−1α2
k = 1.

Let v0 be an arbitrary vertex with neighbors v1, . . . , vd. It is easy to see that

Xv1 + . . .+Xvd − λXv0 = (dα1 − λα0)Zv0 +
∞∑
k=1

∑
u:d(v0,u)=k

((d− 1)αk+1 − λαk + αk−1)Zu.

So Xv1 + . . . + Xvd − λXv0 is also a linear factor with coefficients δk as defined in (6).
Therefore the variance of Xv1 + . . .+Xvd − λXv0 is δ2

0 +
∑

k≥1 d(d− 1)k−1δ2
k < ε.

What can we say about the covariance sequence σk of the Gaussian process Xv? We
have σ0 = 1 and

|dσ1 − λσ0| , |(d− 1)σk+1 − λσk + σk−1| ≤
√

var(Xu) var (Xv1 + · · ·+Xvd − λXv0) <
√
ε.
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In other words, the equations in (2) hold with some small error
√
ε. If K is a positive

integer and δ > 0 is a real number, then for sufficiently small ε we can conclude that for
k ≤ K the covariance σk is closer than δ to the actual solution of (2). It follows that
if ε tends to 0, then the covariance sequence of Xv pointwise converges to the unique
solution of (2). It follows that Xv converges to the Gaussian wave function in distribution
as ε→ 0. �

Proof of Lemma 3.1. It is enough to prove the statement for |λ| < 2
√
d− 1, the case

λ = ±2
√
d− 1 then clearly follows. Excluding ±2

√
d− 1 will spare us some technical

difficulties.
Let βk be a solution of the following recurrence

(8) dβ1 − λ
√
d− 1β0 = 0; βk+1 −

λ√
d− 1

βk + βk−1 = 0, k ≥ 1.

(This is the recurrence that we would get from (7) had we made the substitution βk =
(d − 1)k/2αk.) Since |λ| < 2

√
d− 1, the quadratic equation x2 − λ√

d−1
x + 1 = 0 has two

complex roots, both of norm 1, which implies that (8) has bounded solutions. Set

(9) αk
def
= %k(d− 1)−k/2βk

for some positive real number 1/2 ≤ % < 1. Since βk is bounded, α2
0 +
∑

k≥1 d(d− 1)k−1α2
k

is finite for any % < 1. It is also easy to see that α2
0 +
∑

k≥1 d(d− 1)k−1α2
k tends to infinity

as %→ 1−. Furthermore,

δk = (d− 1)αk+1 − λαk + αk−1 = (d− 1)−(k−1)/2%k
(
%βk+1 −

λ√
d− 1

βk + %−1βk−1

)
=

(d− 1)−(k−1)/2%k(βk+1 −
λ√
d− 1

βk + βk−1︸ ︷︷ ︸
0

+(%− 1)βk+1 + (%−1 − 1)βk−1).

Thus ∑
k≥1

d(d− 1)k−1δ2
k ≤ d

∑
k≥1

%2k
(
(%− 1)βk+1 + (%−1 − 1)βk−1

)2
.

Using that %−1 − 1 = (1− %)/% ≤ 2(1− %) and the fact that βk is bounded we obtain that∑
k≥1

d(d− 1)k−1δ2
k ≤ C(1− %)2

∑
k≥1

%2k = C(1− %)2 %2

1− %2
= C

%2

1 + %
(1− %) ≤ C(1− %),

where C might depend on d and λ, but not on %. Therefore the above sum tends to 0 as %→
1−. A similar calculation shows that δ0 → 0, too. Therefore δ2

0 +
∑

k≥1 d(d− 1)k−1δ2
k → 0.

Choosing % sufficiently close to 1 and rescaling αk completes the proof. �

4. Independent sets

In this section we explain how one can find large independent sets in d-regular, large-girth
graphs using the Gaussian wave functions on Td and their linear factor of i.i.d. approxima-
tions.
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Let Xv be a linear factor of i.i.d. process on the d-regular tree Td that has only finitely
many nonzero coefficients:

(10) Xv =
N∑
k=0

∑
u:d(v,u)=k

αkZu, where α0, α1, . . . , αN ∈ R.

We will present different ways to produce independent sets on Td using the random variables
Xv. In each case the decision whether a given vertex v is chosen for the independent set will
depend (in a measurable and invariant way) only on the values of the random variables
Xu, |d(v, u)| < N ′, where N ′ is some fixed constant. Therefore the obtained random
independent set will be a factor of the i.i.d. process Zv. Moreover, whether a given vertex
v is chosen will depend only on the values in the N +N ′-neighborhood of v. It follows that
the same random procedure can be carried out on any d-regular finite graph provided that
its girth is sufficiently large, and the probability that a given vertex is chosen will be the
same.

So we can work on Td (instead of graphs with sufficiently large girth). We will choose
the coefficients a0, . . . , aN in such a way that the process (10) approximates the Gaussian
wave function with eigenvalue λ = −2

√
d− 1 (see Theorem 4). In the limit we can actually

replace the underlying process Xv with the Gaussian wave function. So from this point on,
let Xv, v ∈ V (Td) denote the Gaussian wave function with eigenvalue −2

√
d− 1. We will

define random independent sets on Td that are measurable and invariant functions of this
process Xv. Then the probability p that v is in the independent set is the same for every
vertex v. We will call this probability p the size of the random independent set. (If we
replace the underlying Gaussian wave function Xv with an approximating process in the
form (10), but otherwise use the same measurable and invariant way to produce a random
independent set from the underlying process, then we get a factor of i.i.d. independent
set with size arbitrarily close to p. Once we work with processes like (10), we can carry
out the procedure on finite regular graphs as well provided that the girth is sufficiently
large. Thus for any ε > 0 and for any n-vertex, d-regular graph G with girth sufficiently
large (depending on ε) we have a random independent set in G with expected size at least
(p− ε)n. It means that the lim inf (as the girth goes to infinity) of the independence ratio
is at least p.)

Our method works best when the degree d is equal to 3.

4.1. The 3-regular case. Let d = 3, then λ = −2
√
d− 1 = −2

√
2 and the covariance

sequence of Xv is

σ0 = 1;σ1 =
−2
√

2

3
;σ2 =

5

6
; . . . .

First approach. We choose those vertices v for which Xv > Xu for each neighbor u ∈
N(v).

We need to compute the probability

P (Xv0 > Xv1 ;Xv0 > Xv2 ;Xv0 > Xv3) ,

where v0 is an arbitrary vertex with neighbors v1, v2, v3. We will use the fact that if
(Y1, Y2, Y3) is a non-degenerate multivariate Gaussian, then the probability that each Yi is
positive can be expressed in terms of the pairwise correlations as follows:

(11) P (Y1 > 0;Y2 > 0;Y3 > 0) =
1

2
− 1

4π

∑
1≤i<j≤3

arccos (corr(Yi, Yj)) .
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Indeed, the probability on the left can be expressed as the standard Gaussian measure of
the intersection of three half-spaces through the origin. This, in turn, equals the relative
area of a spherical triangle with angles π − arccos (corr(Yi, Yj)), which is given by the
standard formula (11).

Let Yi = Xv0 −Xvi , i = 1, 2, 3, then we have

corr(Y1, Y2) =
cov(Y1, Y2)√

var(Y1) var(Y2)
=

1 + σ2 − 2σ1

2− 2σ1

=
11 + 8

√
2

12 + 8
√

2
=

1 + 2
√

2

4
.

The two other correlations are the same, therefore

P (v0 is chosen) =
1

2
− 3

4π
arccos

(
1 + 2

√
2

4

)
= 0.4298245...

So by simply choosing each vertex that is larger than its neighbors, we get an independent
set of size larger than 0.4298. Note that we could choose the vertices that are smaller than
their neighbors and would get an independent set of the same size. Moreover, these two
independent sets are clearly disjoint.

Second approach. We fix some threshold τ ∈ R and we delete those vertices v for
which Xv > τ , then we consider the connected components of the remaining graph. If
a component is small (its size is at most some fixed N ′), then we choose an independent
set of size at least half the size of the component. We can do this in a measurable and
invariant way. For example, we partition the component into two independent sets (this
partition is unique, since each component is connected and bipartite), if one is larger than
the other, we choose the larger, if they have equal size, we choose the one containing the
vertex with the largest value in the component. If a component is large, then we simply do
not choose any vertex from that component. (The idea is to set the parameter τ in such
a way that the probability of large components is very small.)

We used a computer to simulate the procedure described above. Setting τ = 0.12 and
N ′ = 200 the simulation showed that the probability that a given vertex is chosen is above
0.438. In what follows we will provide rigorous (but – in the case of the best result –
computer-assisted) estimates of this probability.

From this point on, we will assume that τ is below the critical threshold, that is, each
component is finite almost surely. It follows that with probability arbitrarily close to 1 the
component of any given vertex has size at most N ′ provided that N ′ is sufficiently large.
Let ps denote the probability that the component of a given vertex has size s. (If a vertex
is deleted, then we say that its component has size 0. Thus p0 is simply the probability
that Xv > τ .) If a component has size 2k − 1 for some k ≥ 1, then we choose at least k
vertices from the component. If a component contains an even number of vertices, then
we choose at least half of the vertices. Thus the probability that a vertex is chosen (in the
limit as N ′ →∞) is at least

(12)
∞∑
k=1

k

2k − 1
p2k−1 +

1

2

(
1− p0 −

∞∑
k=1

p2k−1

)
=

1

2
(1− p0) +

∞∑
k=1

1

2(2k − 1)
p2k−1.

The main difficulty in this approach is to determine (or estimate) the probabilities p2k−1

(each can be expressed as an integral of a multivariate Gaussian, where the domain of
the integration is an unbounded polyhedron). These integrals can be computed with high
precision using a computer (up to p5).
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τ = 0 First we discuss what bound can be obtained with no computer assistance what-
soever. If we set τ = 0, then clearly p0 = 1/2. We can even compute the exact value of
p1. We notice that Xv1 > 0, Xv2 > 0 and Xv3 > 0 imply that Xv0 < 0, because we have a
Gaussian wave function with negative eigenvalue. Thus using (11) we obtain

p1 = P (Xv0 ≤ 0;Xv1 > 0;Xv2 > 0;Xv3 > 0) = P (Xv1 > 0;Xv2 > 0;Xv3 > 0) =

1

2
− 3

4π
arccos (corr(Xv1 , Xv2)) =

1

2
− 3

4π
arccos

(
5

6

)
.

Using this and the trivial estimates p2k−1 > 0 for k ≥ 2, (12) yields the following lower
bound:

1

2
− 3

8π
arccos

(
5

6

)
= 0.4300889...

As far as the authors know, this is the best bound that is not computer-aided.
Doing the same for vertices above the threshold (i.e., vertices with positive values)

clearly results in an another independent set that has the same size and that is disjoint
from the other independent set. The induced subgraph on the union of these two disjoint
independent sets is a bipartite graph. This proves Theorem 2.

τ = 0.086 Here we discuss how we obtained the bound 0.4361 stated in Theorem 1. We
set τ = 0.086 (the largest τ for which we know the components to be finite almost surely,
see Theorem 5). Then p0 = 1 − Φ(0.086) = 0.46573321..., where Φ is the cumulative
distribution function of the standard Gaussian. Given a fixed path containing s vertices of
T3, p′s denotes the probability that the path is a component.

For any k ≥ 2 the number of paths with 2k − 1 vertices through any given vertex is
(2k− 1) · 3 · 4k−2. Furthermore, a component with 3 vertices must be a path, therefore we
have the following relations between p2k−1 and p′2k−1:

(13) p1 = p′1; p3 = 9p′3; p2k−1 ≥ (2k − 1) · 3 · 4k−2p′2k−1, k ≥ 2.

As explained in the appendix, the probabilities p′s can be expressed as integrals. Although
the occurring integrals cannot be computed analytically, the approximate values of p′1, p′3,
and p′5 can be determined by numerical integration:

p′1 ≈ 0.3272861614; p′3 ≈ 0.0025551311; p′5 ≈ 0.0002640467.

Therefore

p1 = p′1 ≈ 0.3272861614; p3 = 9p′3 ≈ 0.0229961799; p5 ≥ 60p′5 ≈ 0.0158428.

Then the resulting lower bound for (12)

(14)
1

2
(1− p0) +

1

2
p1 +

1

6
p3 +

1

10
p5 ≥ 0.5(1− p0) + 0.5p′1 + 1.5p′3 + 6p′5 ≈ 0.43619355.

We proved that the overall error is less than 0.000082, therefore the obtained bound is
certainly above 0.4361. (See the appendix for details on the numerical integration and the
error bound.)

Remark 4.1. The same numerical integrations can be carried out when τ = 0, and thus
one can get non-trivial estimates for p3 and p5 in that case, too. This way the bound in
Theorem 2 can actually be improved to 0.868.
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4.2. The d ≥ 4 case. The methods presented above for finding independent sets in T3

work for regular trees with higher degree, too. However, computing the occurring integrals
even numerically (with the required precision) seems very hard. According to our computer
simulation the second approach with τ = 0.04 would yield a lower bound 0.3905 for d = 4,
but we cannot prove this bound rigorously. Note that the current best bound is 0.3901 [7,
Table 5.3.1]. When the degree is higher than 4, our approach is not as efficient as previous
approaches in the literature.

5. Appendix

Let us consider the Gaussian wave function with eigenvalue λ = −2
√

2 on the 3-regular
tree T3. We delete the vertices with value more than τ for some fixed positive real number
τ and consider the components of the remaining vertices. For an integer s let ps denote
the probability that the component of a given vertex has size s. These probabilities were
used in Section 4 to bound the independence ratio of 3-regular, large-girth graphs, see (12).
Therefore, to get actual bounds, we need to determine (or estimate) ps. In what follows
we will explain how ps can be expressed as an integral in a way that the integration can
be performed numerically with high precision (at least for small integers s).

5.1. Expressing ps as integrals. Let k ≥ 0 be an integer and let us fix a path in T3 with
k + 2 vertices: v0, v1, . . . , vk+1. For 1 ≤ i ≤ k the neighbor of vi different from vi−1 and
vi+1 is denoted by v′i, while the two neighbors of v0 different from v1 are v′0 and v′′0 . The
random variables (in the Gaussian wave function) assigned to vi, v

′
i and v′′i will be denoted

by Xi, X
′
i and X ′′i , respectively.

v4 v3 v2 v1 v0

v′3 v′2 v′1 v′0

v′′0

We define the function fk : R2 → [0, 1] as the following conditional probability:

fk(xk+1, xk) = P (Xi ≤ τ, 0 ≤ i ≤ k − 1;X ′i > τ, 0 ≤ i ≤ k;X ′′0 > τ |Xk+1 = xk+1;Xk = xk) .

The figure below shows the case k = 3.

X4 = x4 X3 = x3
X2 ≤ τ X1 ≤ τ X0 ≤ τ

X ′3 > τ X ′2 > τ X ′1 > τ X ′0 > τ

X ′′0 > τ
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There is a recursive integral formula for these functions. According to Remark 2.3 there
exists a standard Gaussian Zk independent from Xk+1, Xk such that

Xk−1 = −
√

2Xk −
1

2
Xk+1 −

1

2
√

3
Zk and

X ′k = −
√

2Xk −
1

2
Xk+1 +

1

2
√

3
Zk.

This yields the following formula for the conditional probability fk(xk+1, xk) for k ≥ 1:

(15) fk(xk+1, xk) =

∫ ∞
|2
√

6xk+
√

3xk+1+2
√

3τ |
φ(zk)fk−1

(
xk,−

√
2xk −

1

2
xk+1 −

1

2
√

3
zk

)
dzk,

where φ(t) = e−t
2/2/
√

2π is the density function of the standard normal distribution. As
for the case k = 0 (see the figure below), we have

f0(x1, x0) =

∫ −(2
√

6x0+
√

3x1+2
√

3τ)

2
√

6x0+
√

3x1+2
√

3τ

φ(z0) dz0.

(We use the convention that
∫ b
a

is 0 whenever a > b.)

X1 = x1 X0 = x0

X ′0 > τ

X ′′0 > τ

So

(16) f0(x1, x0) = g0(2
√

6x0 +
√

3x1 + 2
√

3τ), where g0(t) =

{
1− 2Φ(t) if t < 0
0 otherwise.

(Here Φ denotes the cumulative distribution function of the standard normal distribution.)
For a positive integer s let us fix a path in T3 containing s vertices. Then p′s will denote

the probability that this path is a component, that is, the values on the vertices of the path
are all below τ and the values on all the adjacent vertices are above τ . (See (13) for the
relation between ps and p′s.) In view of Remark 2.2, the probabilities p′s can be expressed
with the functions fk as follows: if s ≥ 2, then for any integer 0 ≤ m ≤ s− 2

(17) p′s =

∫ τ

−∞

∫ τ

−∞
φ2(u, v)fm(u, v)fs−2−m(v, u) dv du,

where φ2 is the density function of the 2-dimensional centered normal distribution with

covariance matrix

(
1 σ1

σ1 1

)
, where σ1 = −2

√
2/3. As for s = 1,

p1 = p′1 =

∫ ∞
τ

∫ τ

−∞
φ2(u, v)f0(u, v) dv du.
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Our goal is to find the value of p′1, p′3 and p′5. Using (17) with s = 3,m = 0 and s = 5,m = 1:

p′3 =

∫ τ

−∞

∫ τ

−∞
φ2(u, v)f0(u, v)f1(v, u) dv du,

p′5 =

∫ τ

−∞

∫ τ

−∞
φ2(u, v)f1(u, v)f2(v, u) dv du.

5.2. Numerical integration and bounding the error. Next we explain how the above
integrals (expressing p′1, p′3, and p′5) can be computed numerically. We first have to compute
the functions f0, f1, f2. We will store their (approximate) values at the points of a fine
grid, and we treat them as if they were 0 outside some bounded region. Once we know
fk, the value of fk+1 at each point can be obtained as a one-dimensional integral, see
(15). We divide the interval of integration into little pieces and on each piece [x, x+ δ] we
approximate the integral using the trapezoid rule:∫ x+δ

x

f(t) dt ≈ δ
f(x) + f(x+ δ)

2
.

When computing fk+1(x) at some point x ∈ R2 on our grid, we need the values of fk at
points that are not on our grid. These values are interpolated from the values at the closest
grid points in a bilinear way in the two coordinates. Once we have computed f0, f1, and
f2, the final (two-dimensional) integrals are calculated using the two-dimensional version
of the trapezoid rule. The overall run-time is cubic in the resolution of the grid. We have
to choose our grid carefully to get a reasonable run-time and reach the needed precision.

Next, we explain how to estimate the numerical error, which comes from the following
five sources:

• truncation of the region of integration,
• error in the trapezoid rule,
• using interpolated values of some functions,
• floating point errors, and
• errors carried over from previous integration.

The function f0 can be expressed in terms of the cumulative distribution function of the
standard normal distribution Φ, see (16). According to (15) the value fk+1 at some point
x ∈ R2 is defined as a (one-dimensional) integral of the following form:

(18) fk+1(x) =

∫ ∞
|cTx+d|

φ(z)fk(Ax + bz) dz,

where A is a 2× 2 matrix, b, c are two-dimensional vectors, and d is a real number. It is
clear from (16) that 0 ≤ f0(x) ≤ 1. It easily follows by induction that

0 ≤ fk(x) ≤ 2−k for all x ∈ R2.

Thus when we change the interval of integration in (18) to
[
|cTx + d|, R

]
for some R > 0,

we make an error less than the tail probability of a standard Gaussian, which can be
bounded as follows: ∫ ∞

R

φ(z) dz ≤ e−R
2/2

R
√

2π
.
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Let us now turn to the error of the trapezoid rule. If f is doubly differentiable on the
interval [x, x+ δ], then∫ x+δ

x

f(t) dt = δ
f(x) + f(x+ δ)

2
− δ3

12
f ′′(ξ)

for some ξ ∈ [x, x+ δ], see [1, p. 216]. So whenever we have a good uniform bound for |f ′′|
on the interval [x, x+ δ], the trapezoid rule gives a good approximation of the integral:∣∣∣∣∫ x+δ

x

f(t) dt− δ f(x) + f(x+ δ)

2

∣∣∣∣ ≤ δ3

12
sup

ξ∈[x,x+δ]

|f ′′(ξ)| .

Unfortunately, in our case f is not always twice differentiable: the absolute value in the
integration bound in (18) causes the first derivative to jump. This, however, occurs “rarely”
and for those intervals we may use the following weaker bound relying only on the first
derivative: ∣∣∣∣∫ x+δ

x

f(t) dt− δ f(x) + f(x+ δ)

2

∣∣∣∣ ≤ δ2

3
sup

ξ∈[x,x+δ]

|f ′(ξ)| .

Before we can use these estimates, we need to bound the derivatives of φ(z)fk(Ax + bz)
for any fixed x. We start with the derivatives of f0, f1, and f2. These are functions of two
variables that are defined recursively by integrals. We have found the following uniform
bounds for the `2 norm of the gradient vector ∂fk and the `2 → `2 operator norm of the
Hessian matrix Hfk (whenever it exists):

sup
x
‖∂f0(x)‖ ≤ 4.2, sup

x
‖∂f1(x)‖ ≤ 5.9, sup

x
‖∂f2(x)‖ ≤ 6.4,

sup
x
‖Hf0(x)‖ ≤ 13.1, sup

x
‖Hf1(x)‖ ≤ 96.1, sup

x
‖Hf2(x)‖ ≤ 252.8.

On the other hand, for any fixed x we have the following for the first and second derivative
of φ(z)fk(Ax + bz) (with respect to z):∣∣(φ(z)fk(Ax + bz))′

∣∣ ≤ |φ(z)| · ‖(∂fk)(Ax + bz)‖ · ‖b‖+ |φ′(z)| · |fk(Ax + bz)| ,∣∣(φ(z)fk(Ax + bz))′′
∣∣ ≤ |φ(z)| · ‖(Hfk)(Ax + bz)‖ · ‖b‖2 +

2 |φ′(z)| · ‖(∂fk)(Ax + bz)‖ · ‖b‖+ |φ′′(z)| · |fk(Ax + bz)| .

Now we are in a position to estimate the integration error when calculating fk+1(x) in (18).
We have to add up errors of the trapezoid rule on every small interval. After replacing
all |fk|, ‖∂fk‖, and ‖Hfk‖ with the uniform bounds we have found, it remains to add up
|φ(ξi)| where ξi is a point from the i-th interval (and similarly for φ′ and φ′′). Even though
the points ξi are not explicitly given, we can estimate these sums using the following simple
observation: for a fixed interval length δ and a continuous function f with total variation
V (f) <∞ we have

δ
∑
i

|f(ξi)| ≤
∫
|f |+ δV (f).

The interpolation errors can be treated similarly. When we calculate fk+1 at a grid
point x, we need values of fk at points Ax + bz where z runs through the points of a
one-dimensional grid. Since the values of fk are given only at the points of our grid, we
need to interpolate from the values at those points. Errors coming from such interpolations
can be easily bounded using the first and second derivatives, and thus can be treated the
same way as errors of the trapezoid rule.
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If we carry out the above calculations using a computer, we get an approximate value for
fk at each grid point x. Let us denote this calculated version of fk by f̂k. We will also use
the notation f̃k, which is the calculated version of fk assuming that the computer “knows”
fk−1 precisely at each grid point and that the computer can make precise calculations with
real numbers. The difference between f̃k and fk comes from the integration error, the
interpolation error and the error coming from the fact that we are integrating on a finite
interval. As for the difference between f̃k(x) and f̂k(x), we have to take into account that

we only know fk−1 with some error (f̂k−1) and such errors will be carried over to f̂k(x).
Moreover, we will also have computing errors (i.e., floating point errors). These types of
errors are fairly easy to handle. Adding all these up, the obtained error bounds will depend
only on the number of grid points N (after fixing R = 7 and τ = 0.086):

sup
x

∣∣∣f̂0(x)− f0(x)
∣∣∣ ≤ 20

N2
+ 1.4 · 10−12;

sup
x

∣∣∣f̂1(x)− f1(x)
∣∣∣ ≤ 361

N2
+ 2.0 · 10−12;

sup
x

∣∣∣f̂2(x)− f2(x)
∣∣∣ ≤ 1606

N2
+ 2.3 · 10−12.

Once we have calculated the approximate values of f0, f1, and f2 at the points of our
grid, we are ready to compute the final two-dimensional integrals defining p′1, p′3, p′5. Note
that if we use the same grid for the two-dimensional numerical quadrature as we used for
storing the values of the functions fk, then no interpolation errors will occur. Other error
terms can be treated along the same lines as in the one-dimensional case.

Our original goal was to find the value of 0.5(1−p0)+0.5p′1 +1.5p′3 +6p′5, recall (14). Set-
ting N = 20000 the numerical computations outlined above give 0.43619355 and combining
all the errors occurring we get the following upper bound for the overall error:

17094

N2
+ 3.9 · 10−5 +

5 · 105

N4
< 8.2 · 10−5.
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