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Abstract

We show that the Koch curve is tube-null, that is, it can be covered by strips
of arbitrarily small total width. In fact, we prove the following stronger result: the
Koch curve can be decomposed into three sets such that each can be projected to a
line in such a way that the image has Hausdorff dimension less than 1. The proof
contains geometric, combinatorial, algebraic and probabilistic arguments.
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1 Introduction

In Rn an infinite tube is the closed r-neighbourhood of l for some positive real r and some
straight line l. The tube-measure of a set E ⊂ Rn is defined as

µ(E) = inf

{∑
i

γn−1r
n−1
i :

⋃
i

Ti ⊃ E

}
,

where Ti is a tube with cross-sectional radius ri, and γn−1 denotes the volume of the unit
ball of Rn−1. The set E is called tube-null if µ(E) = 0.

Csörnyei and Wisewell showed that the only µ-measuruble sets are the tube-null sets
and their complements [2]. Tube-null sets come up in Fourier analysis: Carbery, Soria and
Vargas proved that every tube-null set is a “set of divergence” for the localisation problem
[1]. From this point of view, it could be useful to see non-trivial examples for tube-null
sets. In many cases, it is hard to tell whether a set is tube-null or not (even for simple
sets).

In this note we prove that the Koch curve is tube-null. In the plane tubes are infinite
strips and tube-nullity simply means the existence of a covering with strips of arbitrarily
small total width. Actually, we will prove more than that. For some s < 1 we will show that
K can be covered by strips such that the sum of the s-powers of the widths is arbitrarily
small, and we will get such coverings by using strips in only three directions. This will
give a decomposition of the Koch curve into three sets, each of which can be projected to
a line in such a way that the image has Hausdorff dimension less than 1.
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Theorem 1.1. The Koch curve K is tube-null, that is, it can be covered by strips of
arbitrarily small total width.

Moreover, there exists a decomposition K = K0 ∪ K1 ∪ K2 and projections π0, π1, π2
such that the Hausdorff dimension of πi(Ki) is less than 1 for i = 0, 1, 2.

We mention that in a conference talk T.C. O’Neil proved that a certain variant of the
Koch curve (which uses only right angles) is tube-null [4]. He also asked whether this holds
for the Koch curve.

2 The proof

Let A0A1A2 be an equilateral triangle with side length 2/
√

3 so that each height of the
triangle is 1. This is our level 0 triangle. Let ei be the line that is parallel to Ai+1Ai+2

and goes through Ai (indices are cyclic). The strip bounded by the lines Ai+1Ai+2 and ei
is the level 0 strip in direction i. For some positive integer n we decompose this strip into
3n strips with equal width 3−n. These strips will be called the level n strips in direction i.
The boundary lines of these strips (in all three directions) determine a triangle grid. The
triangles in this grid are called level n triangles.
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Figure 1: The covering numbers corresponding to level 2 strips

Let us consider the Koch curve K connecting A1 with A2 and contained in the triangle
A0A1A2. It is a self-similar set: it is the union of 4n pieces, each similar to K. Each of
these level n pieces is contained in one of the level n triangle of the grid and connects two
vertices of that triangle.
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Our goal is to find a collection of level n strips such that they cover K and they have a
small total width. For a level n strip we define its covering number as the number of level
n pieces covered by the strip (see Figure 1). The idea is to use strips with large covering
number. The next lemma shows that each piece is covered by at least one strip with a
large covering number.

Lemma 2.1. For each level n piece (at least) one of the three level n strips through this
piece contains at least 2n/3 level n pieces.

Proof. For an arbitrary level n piece take all three level n strips covering this piece. It is
sufficient to prove that the product of the covering numbers of these strips is at least 2n.
We will prove this by induction on n. It clearly holds for n = 0. For arbitrary n ≥ 1, a
level n piece can be viewed as a level (n − 1) piece in one of the four level 1 pieces. Due
to the reflection symmetry of K the level n strip in direction 0 covers at least twice as
many level n pieces in the whole curve as it covers in any of the level 1 pieces. For the
other two directions, we simply use the fact that the strips cover at least as many pieces
in K as in a level 1 piece. It follows that the product is at least the double of the product
corresponding to the same piece when it is considered as a level (n− 1) piece of a level 1
piece, which completes the proof.

Now take all level n strips that contain at least 2n/3 pieces. The lemma yields that
these strips cover K. Our goal is to prove that the number of such strips is very small
(compared to 3n). Since the width of a level n strip is 3−n, this would imply that the total
width is also very small.

For a given strip we distinguish two different ways it can cover a piece. A piece connects
two points lying on the border lines of the strip. If these endpoints lie on the same border
line then we say that it is a border piece. If, on the other hand, its endpoints are on different
border lines, then it is a crossing piece. Note that a piece can have different types when
covered by different strips. In fact, for each level n piece out of the three level n strips
covering the piece, two cover it as a crossing piece and one covers it as a border piece.

C1
C C1

KBC C2
C BK C2

K

Figure 2: The different types of pieces covered by a strip

To every strip we associate a two dimensional vector called the covering vector, the first
and second coordinate of which denotes the number of border and the number of crossing
pieces in the strip, respectively. Clearly, the covering number of a strip is simply the sum
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of the coordinates of the covering vector. First we show that the covering vector of a strip
determines the covering vectors corresponding to the three offspring strips. (By offspring
strips of a level n strip we mean the three level n+ 1 strips contained in the strip.)

Proposition 2.2. A covering vector (v1, v2) yields the following three vectors on the next
level:

(2v1, 2v1 + v2); (0, v2); (v2, v2).

In other words, to get a next level covering vector we simply right-multiply with one of the
three 2× 2 matrices below:

A =

(
2 2
0 1

)
; B =

(
0 0
0 1

)
; C =

(
0 0
1 1

)
.

Proof. Take an arbitrary strip and the pieces covered by the strip. Theoretically, there are
6 possible types of these pieces (two types of border pieces labelled with B+ and B− in
Figure 2 and four types of crossing pieces labelled with C+

1 , C+
2 , C−

1 and C−
2 .) However,

the truth is that each strip has an orientation and depending on this orientation either
all the pieces (covered by the strip) are of types B+, C+

1 , C
+
2 or all of them are of types

B−, C−
1 , C

−
2 . This can be proved by induction on the level of the strip: using Figure 2 the

reader can easily check that the middle offspring strip always changes orientation while
the other two offspring strips have the same orientation as the original strip. Now the
statement of the proposition is immediate.

Now we fix a direction (0, 1 or 2) and take the level 0 strip in this direction. The covering
vector v associated to this strip is either (1, 0) or (0, 1) depending on the direction. The
covering vectors of level n strips in the fixed direction can be obtained in the following
way. We take the product of n matrices, each matrix being A, B or C and right-multiply
v with this product matrix. If we do this for all possible 3n products, then we get the
covering vectors of all 3n level n strips in the fixed direction.

So we need to compute such matrix products. It is not that complicated due to the
following relations between A,B and C:

BA = B; BB = B; BC = C; CC = C. (1)

So there are a lot of cancellations in such a product: a matrix B cancels all the subsequent
A’s and B’s until a C comes which cancels B. (For example, BAABAC = BC = C.)
Also, if there are more than one successive C’s, then we can write only one C instead.
After all possible cancellations have been done we get a product of the following form:

(C)Ak1CAk2C · · ·CAkr(B or C).

By induction, we get that

Ak =

(
2k 2k+1 − 2
0 1

)
, so CAk =

(
0 0
2k 2k+1 − 1

)
.

Now it is easy to see that the sum of the elements in the product matrix is at most

L · 2(k1+1)+(k2+1)+···+(kr+1) ≤ 2c0+reduced length,
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where L, c0 are absolute constants and reduced length denotes the length of the product
after the cancellations.

The covering number of a strip is the sum of the elements in the covering vector which
is bounded above by the sum of the elements in the corresponding product matrix that
has been shown to be at most 2c0+reduced length. So we have proved that

covering number ≤ 2c0+reduced length. (2)

Now we forget for a moment that A,B,C denote matrices. We just take a random
sequence of letters A,B,C, choosing every letter independently and with uniform distri-
bution. We do all the cancellations implied by the relations in (1). The reduced length of
the sequence is defined as the number of letters that survive cancellation. The next lemma
claims that the reduced length of a random sequence of length n is less than n/3− c0 with
high probability.

Lemma 2.3. There exists a constant a < 1 such that

P (the reduced length of a random sequence of length n is at least n/3− c0) < an.

Before proving this lemma, we first show how it can be used to complete the proof of
Theorem 1.1.

Proof of Theorem 1.1. Let Sn
i be the set of level n strips in direction i with covering number

at least 2n/3, and put Sn = Sn
0 ∪ Sn

1 ∪ Sn
2 . On one hand, Lemma 2.1 yields that Sn is a

covering of K. On the other hand, (2) and Lemma 2.3 entail that a random level n strip is
in Sn with probability less than an for some constant a < 1. Thus |Sn| < 3an3n. It follows
that K is tube-null for Sn has total width at most 3an.

To obtain the decomposition claimed in the theorem we define the set Kn
i as the set of

those points in K which are covered by at least one strip in Sn
i . Since Sn is a covering of

K, K = Kn
0 ∪Kn

1 ∪Kn
2 . Set

Ki := {x : x ∈ Kn
i for infinitely many values of n} .

Clearly, K = K0 ∪ K1 ∪ K2. By definition, Ki is covered by Sm
i ∪ Sm+1

i ∪ . . . for any
positive integer m. Let πi be the projection in direction i. Then πi(Ki) is covered by
πi(∪Sm

i )∪πi(∪Sm+1
i )∪ . . . where πi(∪Sn

i ) is the union of at most (3a)n segments of length
3−n. It easily follows that πi(Ki) has Hausdorff dimension at most s = log3(3a) < 1.

Proof of Lemma 2.3. First we give a heuristic proof. A typical sequence contains about
n/3 of each letter. About half of the A’s survive (depending on whether the first preceding
non-A letter is B or C), basically no B’s survive and about one third of the C’s survive
(depending on whether the next letter is A or not). Thus the reduced length of a typical
sequence is about n/3(1/2 + 0 + 1/3) = 5n/18. In the sequel we make these heuristics
precise.

First we compute the expected value of the reduced length of a random sequence of
length n. Consider the letter in position k. We will determine the probability that this
letter survives cancellation. Clearly, the sum of these probabilities is the expected value
in question. However, for these probabilities to be well defined we need to agree on which
letter is cancelled in case of two successive B’s or C’s. When we have two successive
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B’s, let the first B survive and the second one be cancelled. On the other hand, for two
successive C’s let the first be cancelled and the second survive. (In other words, B’s have
a forward-mouth and they eat A’s and other B’s, while C’s have a backward-mouth eating
B’s and other C’s.) Now it is a well-defined question whether a letter survives or not. Let
the random sequence be M1M2 · · ·Mn.

Case Mk = A: with probability 1/3k−1 it holds that for each i ≤ k − 1 Mi = A
when Mk survives. If it is not so, then there is an index i < k for which Mi 6= A but
Mi+1 = Mi+2 = · · · = Mk = A. If Mi = B, then Mi cancels all the subsequent A’s so it
cancels Mk. If Mi = C, then Mk survives. The probability of this is clearly (1−1/3k−1)/2.
Consequently:

P (Mk survives|Mk = A) =
1

2
+

1

2 · 3k−1
.

Case Mk = B: it survives only if Mi equals A or B for each i ≥ k + 1 (and even in this
case it might be cancelled due to a preceding B):

P (Mk survives|Mk = B) ≤ 1

3

(
2

3

)n−k

.

Case Mk = C: if Mk+1 = A, then Mk survives; if Mk+1 = C, then Mk is cancelled. If
Mk+1 = B, then Mk survives if and only if Mk+1 survives which holds if and only if Mi

equals A or B for each i ≥ k + 2. Thus

P (Mk survives|Mk = C) =
1

3
+

1

3

(
2

3

)n−k−1

(1 ≤ k ≤ n− 1),

P (Mn survives|Mn = C) = 1.

It follows that

P (Mk survives) ≤ 5

18
+

1

2 · 3k
+

1

9

(
2

3

)n−k

+
1

9

(
2

3

)n−k−1

(1 ≤ k ≤ n− 1).

When we add up these terms, the sum of the geometric progressions will be bounded so
there exists an absolute constant c1 such that

En := E(reduced length of a random sequence of length n) ≤ 5

18
n+ c1.

Let 0 < ε < 1/36 and let us fix n0 in such a way that En0 < (1/3 − 2ε)n0. Now let
n = kn0 for some positive integer k. We take a random sequence of length n and split it
up into subsequences of length n0. Let Xj be the random variable defined as the reduced
length of the j-th subsequence (j = 1, 2, . . . , k), and let X be the reduced length of the
whole sequence. Clearly, X ≤ X1 + · · ·+Xk. The Xj’s are independent random variables
with E(Xj) = En0 and Xj ∈ (0, n0]. We know that under these conditions the sum
X1 + · · ·+Xk is highly concentrated around its expectation which is kEn0 < (1/3− 2ε)n.
For example, we can use Hoeffding’s inequality [3] (since X1, . . . , Xk are independent and
bounded). For sufficiently large k it holds that c0 < εn, thus

P
(
X ≥ n

3
− c0

)
≤ P

(
X >

(
1

3
− ε
)
n

)
≤ P

(
k∑

j=1

(Xj − En0) > εn0k

)
<

exp

(
−2ε2n2

0k
2

kn2
0

)
= an
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for some constant a < 1. This already proves the lemma for n’s that are sufficiently large
multiples of n0. However, with a larger a < 1 the lemma clearly holds for arbitrary positive
integer n.
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