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Abstract. Studying independent sets of maximum size is equivalent to considering the
hard-core model with the fugacity parameter 𝜆 tending to infinity. Finding the indepen-
dence ratio of random 𝑑-regular graphs for some fixed degree 𝑑 has received much attention
both in random graph theory and in statistical physics.

For 𝑑 ≥ 20 the problem is conjectured to exhibit 1-step replica symmetry breaking
(1-RSB). The corresponding 1-RSB formula for the independence ratio was confirmed for
(very) large 𝑑 in a breakthrough paper by Ding, Sly, and Sun. Furthermore, the so-called
interpolation method shows that this 1-RSB formula is an upper bound for each 𝑑 ≥ 3.
For 𝑑 ≤ 19 this bound is not tight and full-RSB is expected.

In this work we use numerical optimization to find good substituting parameters for
discrete 𝑟-RSB formulas (𝑟 = 2, 3, 4, 5) to obtain improved rigorous upper bounds for the
independence ratio for each degree 3 ≤ 𝑑 ≤ 19. This is a challenging task for multiple
reasons. First, the formulas get increasingly complicated as 𝑟 grows, and fast computation
of the value and the derivatives becomes difficult even for 𝑑 = 3. Second, as the parameter
space grows, the functions to minimize have many local minima, and global optimization
over such high-dimensional rugged landscapes is notoriously difficult.

1. Introduction

The configuration model plays a central role in the theory of random graphs. The
simplest special case is the random 𝑑-regular graph G(𝑁, 𝑑): given 𝑁 vertices, each with 𝑑
half-edges for some fixed degree 𝑑 ≥ 3, a random pairing (matching) of these 𝑑𝑁 half-edges
gives rise to a 𝑑-regular graph. These graphs have a “trivial local structure” in the sense
that with high probability almost all vertices have the same local neighborhood: G(𝑁, 𝑑)
almost surely converges locally (i.e., Benjamini–Schramm convergence) to the 𝑑-regular
tree 𝑇𝑑 as 𝑁 → ∞. In statistical physics 𝑇𝑑 is also known as the Bethe lattice. In fact,
Mézard and Parisi used the expression Bethe lattice for referring to G(𝑁, 𝑑) (see [MP01]
for example), and proposed to study various models on these random graphs.

This paper is concerned with the hard-core model, which can be described using indepen-
dent sets, i.e., subsets of the vertex set with no edge going inside. The independence ratio
of a graph is the size of its largest independent set normalized by the number of vertices.
For any fixed degree 𝑑 ≥ 3, the independence ratio of G(𝑁, 𝑑) is known to converge to
some constant 𝛼*

𝑑 as 𝑁 → ∞ [BGT13]. Determining 𝛼*
𝑑 is a major challenge of the area.

The cavity method, a non-rigorous statistical physics tool, led to a 1-step replica symmetry
breaking (1-RSB) formula for 𝛼*

𝑑. The authors of [BKZZ13] also argued that the formula
may be exact for 𝑑 ≥ 20, which is widely believed to be indeed the case. Later this 1-RSB
formula was confirmed to be exact for (very) large 𝑑 in the seminal paper of Ding, Sly, and
Sun [DSS16].

This work was supported by the MTA-Rényi Counting in Sparse Graphs “Momentum” Research Group
and NRDI grant KKP 138270.
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Lelarge and Oulamara [LO18] used the interpolation method to rigorously establish1 the
1-RSB formula as an upper bound for every 𝑑 ≥ 3. This approach also provides 𝑟-step RSB
bounds for any 𝑟 ≥ 2. The problem is that these formulas get increasingly complicated
and fully solving the corresponding optimization problems seems to be out of reach. Can
we, at least, get an estimate or a bound?

The parameters of the 𝑟-RSB bound includes a functional order parameter which can be
thought of as a measure. The optimal measure satisfies a certain self-consistency equation.
We cannot hope for an exact solution so the natural instinct is to try to find an approximate
solution. In the physics literature an iterative randomized algorithm called population
dynamics is often used to find an approximate solution in the 1-RSB (and occasionally in
the 2-RSB) setting for various models. This sounds like a promising approach but we came
to the surprising conclusion that for the hard-core model it may be a better strategy to
forget about the equation altogether and search among “simple” measures. In this rugged
landscape, it seems to be possible to get very close to the global optimum using atomic
measures with a moderate number of atoms. Furthermore, when we only have a few atoms,
we can tune their weights and locations to a great precision, and this seems to outweigh
the advantage of having a more “delicate” measure (but being unable to tune it to the
same precision).

Moreover, using a small number of atoms means that we can compute the value exactly
and the interpolation method ensures that what we get is always a rigorous upper bound.
In contrast, population dynamics only gives an estimate for the value of the bound because
for large enough populations one simply cannot compute the corresponding bound precisely
and has to settle for an estimate based on a sample.

Therefore, our approach is that we try to find local minima of the discrete version
(corresponding to atomic measures) using a computer. Even this is a formidable challenge
as we will see. Table 1 shows the best bounds we found via numerical optimization.

Table 1. Upper bounds for the asymptotic independence ratio 𝛼*
𝑑, 3 ≤ 𝑑 ≤

8. We indicated which 𝑟-RSB formula yielded our bound. Note that this is
not our estimate for the exact 𝑟-RSB value, but the best upper bound we
found.

𝑑 = 3 𝑑 = 4 𝑑 = 5 𝑑 = 6 𝑑 = 7 𝑑 = 8
1-RSB 0.45085966 0.41119457 0.37926817 0.35298455 0.33088436 0.31197257
𝑟-RSB 0.45078521 0.41109414 0.37917031 0.35289949 0.33081722 0.31192223

(5-RSB) (4-RSB) (4-RSB) (4-RSB) (4-RSB) (3-RSB)

These may seem to be small improvements but we actually expect the true values to be
fairly close to our new bounds. In particular, for 𝑑 = 3 it is reasonable to conjecture that
the bound is sharp up to at least five decimal digits, that is, 𝛼*

3 = 0.45078....
We also have improvements for 9 ≤ 𝑑 ≤ 19. However, as the degree gets closer to

the threshold 𝑑 ≥ 20 (above which 1-step replica symmetry breaking is believed to be the
truth), the 1-RSB bound gets sharper and our improvement gets smaller. For more details,
see the tables in the Appendix.

1Their work builds on [FL03, FLT03, PT04]. In fact, [BKZZ13] already says that the 1-RSB formula is
known to be an upper bound due to the Franz–Leone–Panchenko–Talagrand theorem.
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1.1. Upper bound formulas. In Section 2 we will explain the RSB bounds in detail.
Here we only display a few formulas in order to give the reader an idea of the optimization
tasks we are faced with.

For comparison, we start with the replica symmetric (RS) bound: for any 𝜆 > 0 and
any 𝑥 ∈ [0, 1] we have

(1) 𝛼*
𝑑 log 𝜆 ≤ log

(︀
1 + 𝜆(1 − 𝑥)𝑑

)︀
− 𝑑

2
log(1 − 𝑥2).

Choosing 𝜆 and 𝑥 optimally leads to the exact same formula as the Bollobás bound from
1981 [Bol81], which was based on a first moment calculation for the number of independent
sets of a given size. Actually, this relatively simple bound is already asymptotically tight:(︀
2 + 𝑜𝑑(1)

)︀
log 𝑑
𝑑

, where the asymptotic lower bound is due to Frieze and  Luczak [F L92].
The 1-RSB bound says that for any 𝜆0 > 1 and any 𝑞 ∈ [0, 1]:

(2) 𝛼*
𝑑 log(𝜆0) ≤ log

(︀
1 + (𝜆0 − 1)(1 − 𝑞)𝑑

)︀
− 𝑑

2
log
(︀
1 − (1 − 1/𝜆0)𝑞

2
)︀
.

Choosing 𝜆0 and 𝑞 optimally leads to an (implicit) formula for 𝛼*
𝑑. As we mentioned,

this 1-RSB bound is conjectured to be sharp for any 𝑑 ≥ 20 and known to be sharp for
sufficiently large 𝑑.

Heavy notation would be needed to describe the 𝑟-step RSB bounds in general. In order
to keep the introduction concise, we only give (a discretized version of) the formula for
the case 𝑟 = 2: for any 𝜆0 > 1, 0 < 𝑚 < 1, and any 𝑝1, . . . , 𝑝𝑛, 𝑞1, . . . , 𝑞𝑛 ∈ [0, 1] with
𝑝1 + · · · + 𝑝𝑛 = 1 we have

(3) 𝛼*
𝑑 𝑚 log(𝜆0) ≤ log

𝑛∑︁
𝑖1=1

· · ·
𝑛∑︁

𝑖𝑑=1

(︂ 𝑑∏︁
ℓ=1

𝑝𝑖ℓ

)︂(︂
1 + (𝜆0 − 1)

𝑑∏︁
ℓ=1

(1 − 𝑞𝑖ℓ)

)︂𝑚

− 𝑑

2
log

𝑛∑︁
𝑖1=1

𝑛∑︁
𝑖2=1

𝑝𝑖1𝑝𝑖2

(︂
1 − (1 − 1/𝜆0)𝑞𝑖1𝑞𝑖2

)︂𝑚

.

1.2. The case of degree 3. One can plug any concrete choice of parameter values into
(3) to get a bound for the independence ratio. To demonstrate the strength of (3) even
for small 𝑛, we include here an example for a 2-RSB bound for 𝑑 = 3, 𝑛 = 4: the values

𝜆0 = 19.3 𝑝1 = 0.2493 𝑝2 = 0.2778 𝑝3 = 0.2880 𝑝4 = 0.1849

𝑚 = 0.557 𝑞1 = 0.1184 𝑞2 = 0.5947 𝑞3 = 0.8876 𝑞4 = 0.9827

give a bound 𝛼*
3 < 0.450789952 < 0.45079 that already comfortably beats the current best

1-RSB bound. Table 2 shows our best bounds for 𝑑 = 3.

Table 2. The degree 3 case: our best 𝑟-RSB bounds for 𝛼*
3 for 𝑟 = 2, 3, 4, 5

compared to previous upper bounds.

RS/first moment 0.45906 Bollobás [Bol81]
McKay bound 0.45537 McKay [McK87]
1-RSB 0.45085966 Lelarge–Oulamara [LO18]
2-RSB 0.45078994
3-RSB 0.45078602
4-RSB 0.45078535
5-RSB 0.45078521
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As for lower bounds for small 𝑑, the best results have been achieved by so-called local
algorithms. Table 3 lists a few selected works and the obtained bounds for 𝛼*

3.

Table 3. Lower bounds on 𝛼*
3.

0.4328 Hoppen [Hop08]
0.4352 Kardoš–Král–Volec [KKV11]
0.4361
(0.4380)

Csóka–Gerencsér–Harangi–Virág [CGHV15]

0.4375 Hoppen–Wormald [HW18]
0.4453 Csóka [Csó16]

Note that a beautiful result of Rahman and Virág [RV17], building on a work of Gamarnik
and Sudan [GS14], says that asymptotically (as 𝑑 → ∞) local algorithms can only produce
independent sets of half the maximum size (over random regular graphs). For small 𝑑,
however, the independence ratio produced by local algorithms may be the same as (or very
close to) 𝛼*

𝑑.

1.3. Optimization methods. We wrote Python/SAGE codes to perform the numerical
optimization for the replica bounds.

∙ The first task was to efficiently compute the 𝑟-RSB formulas and their derivatives
w.r.t. the parameters. In fact, depending on 𝑟 and 𝑑, we needed to use different
approaches in order to achieve acceptable running time.

∙ Once we had the efficient computing of the value and the derivatives, we could
use standard algorithms (such as the conjugate gradient or the Broyden–Fletcher–
Goldfarb–Shanno algorithm; both implemented in the SciPy package) to perform
local optimization starting from random points. As the paramater space grows, one
needs more attempts to find an appropriate starting point leading to a good local
optimum.

∙ The fact that the 𝑟-RSB formula contains the (𝑟− 1)-RSB as a special case means
that the local optimization has the tendency to find such “lower-depth” solutions
(on the boundary of the parameter space). So it is beneficial to distort the target
function in some way in order to force the 𝑟 − 1 Parisi parameters to stay away
from the boundary until the function value goes below the (𝑟 − 1)-RSB bound.

∙ As the dimension of the parameter space grows, we start to encounter a so-called
rugged landscape with a huge number of local minima. Therefore we cannot expect
to get close to the global optimum even after trying a large number of starting
points. To overcome this obstacle, we experimented with a basin hopping algorithm
for degree 𝑑 = 3. When we are at a local minimum (i.e., the bottom of a “basin”),
we try to “hop out” of the basin by applying a small perturbation of the variables.
After a new round of local optimization, we end up at the bottom of a nearby
basin. If the function value decreases compared to the previous basin, we accept
this step. If not, then we make a random decision of acceptance/rejection based on
the difference of the values. This approach led to the discovery of our best bounds
for 𝑑 = 3. In the case of the 5-RSB bound the basin hopping algorithm was running
for days.

∙ The smaller the degree 𝑑, the deeper we could go in the replica hierarchy (i.e.,
use larger 𝑟). We could perform the 3-RSB optimization for 𝑑 ≤ 10, the 4-RSB
optimization for 𝑑 ≤ 6, and the 5-RSB optimization for 𝑑 = 3.
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Although the bounds are hard to find, they are easy to check: one simply needs to plug the
specific parameter values into the given formulas. We created a website with interactive
SAGE codes where the interested reader may check the claimed bounds and even run simple
optimizations: https://www.renyi.hu/~harangi/rsb.htm. Our codes can be found in
the public GitHub repository https://github.com/harangi/rsb.

1.4. 2-RSB in the literature. As far as we know, there was only one previous attempt to
get an estimate for the 2-RSB formula (only for 𝑑 = 3). In [BKZZ13] it reads that “the 2-
RSB calculation is [...] somewhat involved and was done in [Riv05] [and obtained the value]
0.45076(7)”. Rivoire’s thesis [Riv05] indeed reports briefly of a 2-RSB calculation. Note
that, since he considers the equivalent vertex-cover problem (concerning the complements
of independent sets), we need to subtract his value from 1 to get our value. On page 113
he writes that using population dynamics he obtained the following estimate: 0.54924 ±
0.00007. For our problem this means 0.45076 ± 0.00007 = [0.45069, 0.45083]. The value
0.45076(7) in [BKZZ13] may have come from mistakenly using an error ±0.000007 instead
of ±0.00007 when citing Rivoire’s work. The thesis only provides a short description of
how this estimate was obtained. The author refers to it as “unfactored” 1-RSB and it
seems to be the same as what we call a non-standard 1-RSB in our remarks after Theorem
2.2. If that is indeed the case, then our findings suggest that its true value should actually
be around 0.45081.

Outline of the paper. In Section 2 we present the general replica bounds and their
discrete versions that we need to optimize. Section 3 contains details about the numerical
optimization. In Section 4 we revisit the 𝑟 = 1 case and investigate more sophisticated
choices for the functional order parameter. In Section 5 we attempt to give a digestible
overview of the interpolation method (in the particular setting of the hard-core model over
random regular graphs). In the Appendix the reader finds our best bounds for different
values of 𝑑 and 𝑟.

https://www.renyi.hu/~harangi/rsb.htm
https://github.com/harangi/rsb
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2. Replica formulas

Originally the cavity method and belief propagation were non-rigorous techniques in
statistical physics to predict the free energy of various models. They inspired a large body
of rigorous work, and over the years several predictions were confirmed. In particuler, the
so-called interpolation method has been used with great success to establish rigorous upper
bounds on the free energy.

In the context of the hard-core model over random 𝑑-regular graphs, the interpolation
method was carried out by Lelarge and Oulamara in [LO18], building on the pioneering
works [FL03, FLT03, PT04]. First we present the general 𝑟-step RSB bound obtained this
way.

2.1. The general replica bound. For a topological space Ω let 𝒫(Ω) denote the space of
Borel probability measures on Ω equipped with the weak topology. We set 𝒫1 ..= 𝒫

(︀
[0, 1]

)︀
and then recursively 𝒫𝑘+1 ..= 𝒫

(︀
𝒫𝑘
)︀

for 𝑘 ≥ 1. The general bound will have the following
parameters:

∙ 𝜆 > 1;
∙ 0 < 𝑚1, . . . ,𝑚𝑟 < 1 corresponding to the so-called Parisi parameters;
∙ a fixed (deterministic) distribution 𝜂(𝑟) ∈ 𝒫𝑟.

Definition 2.1. Given a fixed 𝜂(𝑟) ∈ 𝒫𝑟, we choose (recursively for 𝑘 = 𝑟−1, 𝑟−2, . . . , 1) a
random 𝜂(𝑘) ∈ 𝒫𝑘 with distribution 𝜂(𝑘+1). Finally, given 𝜂(1) we choose a random 𝑥 ∈ [0, 1]
with distribution 𝜂(1). In fact, we will need 𝑑 independent copies of this random sequence,
indexed by ℓ ∈ {1, . . . , 𝑑}. Schematically:

𝜂(𝑟) → 𝜂
(𝑟−1)
ℓ → · · · → 𝜂

(1)
ℓ → 𝑥ℓ (ℓ = 1, . . . , 𝑑).

For 1 ≤ 𝑘 ≤ 𝑟 we define ℱ𝑘 as the 𝜎-algebra generated by 𝜂
(𝑟−1)
ℓ , . . . , 𝜂

(𝑘)
ℓ , ℓ = 1, . . . , 𝑑,

and by E𝑘 we denote the conditional expectation w.r.t. ℱ𝑘. Note that ℱ𝑟 is the trivial
𝜎-algebra and hence E𝑟 is simply E.

Given a random variable 𝑉 (depending on the variables 𝜂
(𝑘)
ℓ , 𝑥ℓ), let us perform the

following procedure: raise it to power 𝑚1, then apply E1, raise the result to power 𝑚2,
then apply E2, and so on. In formula, let 𝑇0𝑉 ..= 𝑉 and recursively for 𝑘 = 1, . . . , 𝑟 set

𝑇𝑘
..= E𝑘(𝑇𝑘−1𝑉 )𝑚𝑘 .

In this scenario, applying E𝑘 means that, given 𝜂
(𝑘)
ℓ , ℓ = 1, . . . , 𝑑, we take expectation in

𝜂
(𝑘−1)
ℓ , ℓ = 1, . . . , 𝑑 (or in 𝑥ℓ if 𝑘 = 1).

Now we are ready to state the 𝑟-RSB bound given by the interpolation method.

Theorem 2.2. Let 𝑟 ≥ 1 be a positive integer and 𝜆,𝑚1, . . . ,𝑚𝑟, 𝜂
(𝑟) parameters as de-

scribed above. Let 𝑥ℓ, ℓ = 1, . . . , 𝑑 denote the random variables obtained from 𝜂(𝑟) via the
procedure in Definition 2.1. Then we have the following upper bound for the asymptotic
independence ratio 𝛼*

𝑑 of random 𝑑-regular graphs:

𝛼*
𝑑 𝑚1 · · ·𝑚𝑟 log 𝜆 ≤ log 𝑇𝑟

(︀
1 + 𝜆(1 − 𝑥1) · · · (1 − 𝑥𝑑)

)︀
− 𝑑

2
log 𝑇𝑟(1 − 𝑥1𝑥2).

This was rigorously proved in [LO18]. They actually considered a more general setting
incorporating a class of (random) models over a general class of random hypergraphs (with
given degree distributions). They used the hard-core model over 𝑑-regular graphs as their
chief example, working out the specific formulas corresponding to their general RS and
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1-RSB bounds. Theorem 2.2 follows from their general 𝑟-RSB bound [LO18, Theorem 3]
exactly the same way as in the RS and 1-RSB case.

We should make a number of remarks at this point.

∙ Above we slightly deviated from the standard notation as the usual form of the
Parisi parameters would be

0 < 𝑚̂1 < · · · < 𝑚̂𝑟 < 1,

where 𝑚̂𝑘 can be expressed in terms of our parameters 𝑚𝑘 as follows:

𝑚̂𝑟 = 𝑚1; 𝑚̂𝑟−1 = 𝑚1𝑚2; . . . ; 𝑚̂1 = 𝑚1𝑚2 · · ·𝑚𝑟.

As a consequence, the indexing of ℱ𝑘, E𝑘, 𝑇𝑘 is in reverse order, and the defini-
tion of 𝑇𝑘 simplifies a little because raising to power 1/𝑚̂𝑟−𝑘+2 and then immedi-
ately to 𝑚̂𝑟−𝑘+1 (as done, for example, in [PT04]) amounts to a single exponent
𝑚̂𝑟−𝑘+1/𝑚̂𝑟−𝑘+2 = 𝑚𝑘 in our setting.

∙ Also, generally there is an extra layer of randomness (starting from an 𝜂(𝑟+1) ∈
𝒫𝑟+1) resulting in another expectation outside the log. This random choice is meant
to capture the local structure of the graph in a given direction. However, when the
underlying graph is 𝑑-regular (meaning that essentially all vertices see the same
graph structure locally), we do not need this layer of randomness (in principle).
Therefore, in the 𝑑-regular case one normally chooses a trivial 𝜂(𝑟+1) = 𝛿𝜂(𝑟) . That

is why we omitted 𝜂(𝑟+1) and started with a deterministic 𝜂(𝑟).
For 𝑑 ≥ 20, where the 1-RSB bound is (conjectured to be) tight, the optimal

choice of parameters indeed uses a trivial 𝜂(𝑟+1) = 𝛿𝜂(𝑟) with 𝑟 being 1 in this case.
For 𝑑 ≤ 19, the same choice gives us a 1-RSB upper bound (which is not tight any

more). Let us call this the standard 1-RSB bound, and, in general, we call an 𝑟-RSB
bound standard if it was obtained by using a deterministic 𝜂(𝑟) at the start. Then

a non-standard bound would use 𝜂(𝑟+1) (and hence random 𝜂
(𝑟)
ℓ variables). Note

that a non-standard 𝑟-RSB bound is actually a special case of standard (𝑟+1)-RSB
bounds in the limit 𝑚𝑟+1 → 0. So even though it is possible to improve on standard
𝑟-step bounds by non-standard 𝑟-step bounds, it actually makes more sense to use
the extra layer to move to (𝑟+1)-step bounds instead (and use some positive 𝑚𝑟+1).

∙ The full RSB picture is well-understood for the famous Sherrington–Kirkpatrick
model [Tal06, Pan13], where the infimum of the 𝑟-RSB bound converges to the
free energy as 𝑟 → ∞. It is reasonable to conjecture that this is the case for the
hard-core model as well. There is some progress towards this in [COP19] where a
variational formula is obtained for 𝛼*

𝑑.

2.2. A specific choice. The formula in Theorem 2.2 would be hard to work with nu-
merically because it would only give good results for very large 𝜆. So we make a specific
choice (similar to the one made in [LO18, Section 3.2.1] in the case 𝑟 = 1) that may not be
optimal but will allow us to use numerical optimization. We consider the limit 𝜆 → ∞ and
𝑚1 → 0 in a way that 𝑚1 log 𝜆 stays constant and 𝑥 is concentrated on the two-element
set {0, 1 − 1/𝜆}, meaning that 𝜂(1) is a distribution 𝑞𝛿1−1/𝜆 + (1 − 𝑞)𝛿0 for some random
𝑞 ∈ [0, 1].

For a fixed 𝜆0 > 1 let log 𝜆0 = 𝑚1 log 𝜆. First we focus on the expressions 𝑇1

(︀
1 + 𝜆(1 −

𝑥1) · · · (1 − 𝑥𝑑)
)︀

and 𝑇1(1 − 𝑥1𝑥2). If each 𝑥ℓ ∈ {0, 1 − 1/𝜆} was fixed, we would have the
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following in the limit as 𝜆 → ∞, 𝑚1 → 0 with 𝑚1 log 𝜆 = log 𝜆0:(︀
1 + 𝜆(1 − 𝑥1) · · · (1 − 𝑥𝑑)

)︀𝑚1 →

{︃
𝜆0 if each 𝑥ℓ is 0;

1 otherwise;

(1 − 𝑥1𝑥2)
𝑚1 →

{︃
1/𝜆0 if 𝑥1 = 𝑥2 = 1 − 1/𝜆;

1 otherwise.

Therefore, conditioned on

𝜂
(1)
ℓ = 𝑞ℓ𝛿1−1/𝜆 + (1 − 𝑞ℓ)𝛿0

for some deterministic 𝑞1, . . . , 𝑞𝑑 ∈ [0, 1], we get

𝑇1

(︀
1 + 𝜆(1 − 𝑥1) · · · (1 − 𝑥𝑑)

)︀
→ 1 + (𝜆0 − 1)(1 − 𝑞1) · · · (1 − 𝑞𝑑);

𝑇1(1 − 𝑥1𝑥2) → 1 − (1 − 1/𝜆0)𝑞1𝑞2.

In the resulting formula the randomness in layer 1 disappears along with the Parisi param-
eter 𝑚1. After re-indexing (𝑘 → 𝑘 − 1) we get the following corollary.

Corollary 2.3. Let 𝜆0 > 1 and 0 < 𝑚1, . . . ,𝑚𝑟−1 < 1. Furthermore, fix a deterministic
𝜋(𝑟−1) ∈ 𝒫𝑟−1 and take 𝑑 independent copies of recursive sampling:

𝜋(𝑟−1) → 𝜋
(𝑟−2)
ℓ → · · · → 𝜋

(1)
ℓ → 𝑞ℓ (ℓ = 1, . . . , 𝑑).

We define the conditional expectations E𝑘 and the corresponding 𝑇𝑘 as before, w.r.t. this
new system of random variables. Then

𝛼*
𝑑 𝑚1 · · ·𝑚𝑟−1 log 𝜆0 ≤ log 𝑇𝑟−1

(︀
1+(𝜆0−1)(1−𝑞1) · · · (1−𝑞𝑑)

)︀
−𝑑

2
log 𝑇𝑟−1

(︀
1−(1−1/𝜆0)𝑞1𝑞2

)︀
.

Proof. For a formal proof one needs to define an 𝜂(𝑟) = 𝜂
(𝑟)
𝜆 ∈ 𝒫𝑟 for the fixed 𝜋(𝑟−1) and

any given 𝜆 such that the corresponding 𝜂
(1)
ℓ is distributed as 𝑞ℓ𝛿1−1/𝜆 + (1 − 𝑞ℓ)𝛿0. Then

Theorem 2.2 can be applied and we get the new formula in the limit. �

2.3. Discrete versions. In our numerical computations we will use the bound of Corollary
2.3 in the special case when each distribution is discrete.

For 𝑟 = 1 we have a deterministic 𝑞 and we get back (2), while 𝑟 = 2 gives (3).
Let 𝑟 = 3. For any 𝜆0 > 1, 0 < 𝑚1,𝑚2 < 1, 𝑝𝑖 ≥ 0 with

∑︀
𝑝𝑖 = 1, 𝑝𝑖,𝑗 ≥ 0 with∑︀

𝑗 𝑝𝑖,𝑗 = 1 for every fixed 𝑖, and 𝑞𝑖,𝑗 ∈ [0, 1] we get that

𝛼*
𝑑 𝑚1𝑚2 log(𝜆0) ≤ log𝑅star − 𝑑

2
log𝑅edge, where

𝑅star =
∑︁
𝑖1

· · ·
∑︁
𝑖𝑑

(︂ 𝑑∏︁
ℓ=1

𝑝𝑖ℓ

)︂(︃∑︁
𝑗1

· · ·
∑︁
𝑗𝑑

(︂ 𝑑∏︁
ℓ=1

𝑝𝑖ℓ,𝑗ℓ

)︂(︂
1 + (𝜆0 − 1)

𝑑∏︁
ℓ=1

(1 − 𝑞𝑖ℓ,𝑗ℓ)

)︂𝑚1
)︃𝑚2

;

𝑅edge =
∑︁
𝑖1

∑︁
𝑖2

𝑝𝑖1𝑝𝑖2

(︃∑︁
𝑗1

∑︁
𝑗2

𝑝𝑖1,𝑗1𝑝𝑖2,𝑗2

(︂
1 − (1 − 1/𝜆0)𝑞𝑖1,𝑗1𝑞𝑖2,𝑗2

)︂𝑚1
)︃𝑚2

.

For a general 𝑟 ≥ 1, we will index our parameters 𝑝𝑠, 𝑞𝑠 with sequences 𝑠 =
(︀
𝑠(1), . . . , 𝑠(𝑘)

)︀
of length |𝑠| = 𝑘 ≤ 𝑟− 1. We denote the empty sequence (of length 0) by ∅. Furthermore,
we write 𝑠′ ≻ 𝑠 if 𝑠′ is obtained by adding an element to the end of 𝑠, that is, |𝑠′| = |𝑠|+ 1
and the first |𝑠| elements coincide.
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Now let 𝑆 be some set of sequences of length at most 𝑟−1 such that ∅ ∈ 𝑆. We partition
𝑆 into two parts 𝑆≤𝑟−2∪𝑆𝑟−1 based on whether the length of the sequence is at most 𝑟− 2
or exactly 𝑟 − 1, respectively.

Now the discrete version of the 𝑟-RSB bound has the following parameters:

∙ 𝜆0 > 1;
∙ 0 < 𝑚1, . . . ,𝑚𝑟−1 < 1;
∙ 𝑝𝑠 ≥ 0, 𝑠 ∈ 𝑆, satisfying∑︁

𝑠′≻𝑠

𝑝𝑠′ = 1 for each 𝑠 ∈ 𝑆≤𝑟−2;

∙ 𝑞𝑠 ∈ [0, 1], 𝑠 ∈ 𝑆𝑟−1.

Now we define the distribution 𝜋(𝑟−1) ∈ 𝒫𝑟−1 corresponding to the parameters 𝑝𝑠, 𝑞𝑠. Set

𝜋𝑠
..= 𝑞𝑠 ∈ [0, 1] for any 𝑠 ∈ 𝑆𝑟−1,

and then, recursively for 𝑘 = 𝑟 − 2, 𝑟 − 3, . . . , 1, 0, for a sequence 𝑠 of length |𝑠| = 𝑘 let

𝜋𝑠
..=
∑︁
𝑠′≻𝑠

𝑝𝑠′𝛿𝜋𝑠′
∈ 𝒫𝑟−1−𝑘.

We want to use Corollary 2.3 with 𝜋(𝑟−1) ..= 𝜋∅ ∈ 𝒫𝑟−1. The obtained bound can be
expressed as follows.

For any 𝑑-tuple 𝑠1, . . . , 𝑠𝑑 of sequences of length 𝑟 − 2, set

𝑅star
𝑠1,...,𝑠𝑑

..=
∑︁
𝑠′1≻𝑠1

· · ·
∑︁
𝑠′𝑑≻𝑠𝑑

𝑝𝑠′1 · · · 𝑝𝑠′𝑑
(︀
1 + (𝜆0 − 1)(1 − 𝑞𝑠′1) · · · (1 − 𝑞𝑠′𝑑)

)︀𝑚1 ,

and then, recursively for 𝑘 = 𝑟 − 3, 𝑟 − 4, . . . , 0, for any 𝑑-tuple 𝑠1, . . . , 𝑠𝑑 of sequences of
length 𝑘 let

𝑅star
𝑠1,...,𝑠𝑑

..=
∑︁
𝑠′1≻𝑠1

· · ·
∑︁
𝑠′𝑑≻𝑠𝑑

𝑝𝑠′1 · · · 𝑝𝑠′𝑑
(︀
𝑅star

𝑠′1,...,𝑠
′
𝑑

)︀𝑚𝑟−1−𝑘 .

Similarly, for any pair 𝑠1, 𝑠2 of sequences of length 𝑟 − 2, set

𝑅edge
𝑠1,𝑠2

..=
∑︁
𝑠′1≻𝑠1

∑︁
𝑠′2≻𝑠2

𝑝𝑠′1𝑝𝑠′2
(︀
1 − (1 − 1/𝜆0)𝑞𝑠′1𝑞𝑠′2

)︀𝑚1 ,

and then, recursively for 𝑘 = 𝑟 − 3, 𝑟 − 4, . . . , 0. for any pair 𝑠1, 𝑠2 of sequences of length
𝑘, let

𝑅edge
𝑠1,𝑠2

..=
∑︁
𝑠′1≻𝑠1

∑︁
𝑠′2≻𝑠2

𝑝𝑠′1𝑝𝑠′2
(︀
𝑅edge

𝑠′1,𝑠
′
2

)︀𝑚𝑟−1−𝑘 .

Then the bound is

𝛼*
𝑑 𝑚1 . . .𝑚𝑟−1 log(𝜆0) ≤ log𝑅star

∅,...,∅ −
𝑑

2
log𝑅edge

∅,∅ .

Remark 2.4. Normally we fix integers 𝑛1, . . . , 𝑛𝑟−1 ≥ 2 and assume that the 𝑘-th elements
of our sequences come from the set {1, . . . , 𝑛𝑘}. This way the number of free parameters
(after taking the sum restrictions on the parameters 𝑝𝑠 into account) is

(4) (𝑟 − 1) + 2𝑛1𝑛2 · · ·𝑛𝑟−1.

In the tables of Section 3 and the Appendix we will refer to such a parameter space as
[𝑛𝑟−1, · · · , 𝑛1].
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3. Numerical results

Our starting point was the observation in [BKZZ13] that the 1-RSB formula for 𝛼*
𝑑 “is

stable towards more steps of replica symmetry breaking” only for 𝑑 ≥ 20, so it should not be
exact for 𝑑 ≤ 19. Therefore the 2-RSB bound in Corollary 2.3 ought to provide an improved
upper bound for some choice of 𝜆0,𝑚1, 𝜋

(1). The optimal 𝜋(1) may be continuous. Can we
achieve significant improvement on the 1-RSB bound even by using some atomic measure
𝜋(1) =

∑︀𝑛
𝑖=1 𝑝𝑖𝛿𝑞𝑖? In other words, can we find good substituting values for the parameters

𝑝𝑖, 𝑞𝑖 of the discrete version (3) using numerical optimization? We were skeptical because
we may not be able to use a large enough 𝑛 to get a good atomic approximation of the
optimal 𝜋(1). Surprisingly, based on our findings it appears that even a small number of
atoms may yield close-to-optimal bounds. Table 4 shows our best 2-RSB bounds for 𝑑 = 3
and for different values of 𝑛.

Table 4. Our 2-RSB bounds for 𝛼*
3 using 𝑛 atoms.

[𝑛] 2-RSB bound
[2] 0.45080997599102
[3] 0.45079057802543
[4] 0.45078995066987
[5] 0.45078993616987
[6] 0.45078993583363
[7] 0.45078993582594

[11] 0.45078993582525
[32] 0.45078993582510

Of course, we do not know what the true infimum of the bound in Corollary 2.3 is, but
our bounds seem to stabilize very quickly as we increase the number of atoms 𝑛. Also, we
experimented with various other approaches that would allow for better approximations of
continuous distributions and they all pointed to the direction that the bounds in Table 4
are close to optimal.

This actually gave us the hope that it may not be impossible to get further improvements
by considering 𝑟-step replica bounds for 𝑟 ≥ 3 even though the number of atoms we can
use at each layer is indeed very small due to computational capacities. Table 5 shows some
bounds we obtained for 𝑑 = 3 and 𝑟 ≥ 3 using different parameter spaces (see Remark
2.4).

Table 5. Our 3,4,5-step RSB bounds for 𝛼*
3.

𝑟 [𝑛𝑟−1, . . . , 𝑛1] RSB bound
3 [5, 4] 0.45078601768

[8, 3] 0.45078601734
[8, 4] 0.45078601720

4 [6, 2, 2] 0.45078537162
[5, 3, 2] 0.45078534630
[8, 2, 2] 0.45078534531

5 [4, 2, 2, 2] 0.45078520944

The dimension of the parameter space (4) depends only on 𝑟, 𝑛1, . . . , 𝑛𝑟−1 and not on the
degree 𝑑. However, as we increase 𝑑, computing 𝑅star (see Section 2.3) and its derivative
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takes longer and we have to settle for using smaller values of 𝑟 and 𝑛𝑘. At the same time,
the 1-RSB formula is presumably getting closer to the truth as we are approaching the
phase transition between 𝑑 = 19 and 𝑑 = 20. Nevertheless, we tried to achieve as much
improvement as we could for each degree 𝑑 = 3, . . . , 19. See the Appendix for results for
𝑑 ≥ 4.

4. One-step RSB revisited

It is possible to improve the previous best bounds even within the framework of the
𝑟 = 1 case of the interpolation method. Recall that Theorem 2.2 gives the following bound
in this case:

𝛼*
𝑑 𝑚 log 𝜆 ≤ logE

(︀
1 + 𝜆(1 − 𝑥1) · · · (1 − 𝑥𝑑)

)︀𝑚 − 𝑑

2
logE(1 − 𝑥1𝑥2)

𝑚,

where 𝑥1, . . . , 𝑥𝑑 are IID from some fixed distribution 𝜂 on [0, 1]. If we use 𝜂 = 𝑞𝛿1−1/𝜆 +
(1 − 𝑞)𝛿0 and take the limit 𝑚 → 0, 𝜆 → ∞ with 𝑚 log 𝜆 = 𝜆0, then we get (2) as
explained in Section 2.2 for general 𝑟. Optimizing (2) leads to what we refer to as the
1-RSB bound throughout the paper. In this section we show how one can improve on (2)
for 𝑑 ≤ 19 by considering a more sophisticated 𝜂. We will refer to the obtained bounds
as 1+-RSB bounds. Although this approach is generally inferior to 2-RSB bounds, it is
computationally less demanding. In fact, for degrees 𝑑 = 17, 19 we could only perform
the 2-RSB optimization with 𝑛1 = 2 and the obtained bound was actually worse than the
1+-RSB bound outlined below.

For the sake of simplicity we start with a choice of 𝜂 only slightly more general than the
original one: let 𝜂 have three atoms at the locations

1 − 1

𝜆0
= 0; 1 − 1

𝜆1/2
; 1 − 1

𝜆1
.

We denote the measures of these atoms by 𝑞0, 𝑞1/2, 𝑞1 ≥ 0, where 𝑞0 + 𝑞1/2 + 𝑞1 = 1; i.e.,

𝜂 = 𝑞0𝛿0 + 𝑞1/2𝛿1−1/
√
𝜆 + 𝑞1𝛿1−1/𝜆.

Note that the original choice corresponds to the case 𝑞1/2 = 0.
As before, we let 𝑚 → 0, 𝜆 → ∞ with 𝑚 log 𝜆 = 𝜆0, which leads to the following bound:

(5) 𝛼*
𝑑 log(𝜆0) ≤ log

(︂
1 +

(︀√︀
𝜆0 − 1

)︀
𝑑𝑞𝑑−1

0 𝑞1/2 +
(︀
𝜆0 − 1

)︀
𝑞𝑑0

)︂
− 𝑑

2
log

(︂
1 +

(︀
1/
√︀

𝜆0 − 1
)︀
(1 − 𝑞0)

2 +
(︀
1/𝜆0 − 1/

√︀
𝜆0

)︀
𝑞21

)︂
.

It is easy to see that the optimal parameters satisfy the equations√︀
𝜆0 = (𝑑− 1)

𝑞1
𝑞0

and 𝑞1/2 =
𝑑− 1

𝑑− 2
− 𝑑𝑞0

𝑑− 1
− 1

(𝑑− 1)(𝑑− 2)𝑞𝑑−2
0

.

Using 𝑞1 = 1 − 𝑞0 − 𝑞1/2 we get a bound in one unknown parameter 𝑞0, which is easy to
optimize numerically. This is the simplest way to improve upon the basic 1-RSB bound.
For 𝑑 = 3 one gets 0.450851131.

More generally, one can take any measure 𝜏 on [0, 1] and define 𝜂 as the push-forward of
𝜏 w.r.t. the mapping 𝑡 ↦→ 1 − 1/𝜆𝑡. Once again, letting 𝑚 → 0, 𝜆 → ∞ with 𝑚 log 𝜆 = 𝜆0,
we get the following:

𝛼*
𝑑 log(𝜆0) ≤ log

(︂∫︁
𝜆
max(0,1−

∑︀
𝑡ℓ)

0 d𝜏 𝑑(𝑡1, . . . , 𝑡𝑑)

)︂
− 𝑑

2
log

(︂∫︁
𝜆
−min(𝑡1,𝑡2)
0 d𝜏 2(𝑡1, 𝑡2)

)︂
.
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For any fixed 𝜆0, an optimal 𝜏 must satisfy a simple fixed point equation involving the
convolution power 𝜏 *(𝑑−1). For div ∈ N one can divide [0, 1] into div many intervals and
search among atomic measures 𝜏 with atom locations at 𝑖/div, 𝑖 = 0, 1, . . . , div. It is
possible to numerically solve the fixed point equation by an iterative algorithm. Then
it remains to tune the parameter 𝜆0. We computed these 1+-RSB bounds for div =
1, 2, 4, 8, . . . , 1024. Note that div = 1 corresponds to the original 1-RSB, while div = 2
gives (5). Table 6 shows the results for 𝑑 = 3.

Table 6. Our 1+-RSB bounds for 𝛼*
3. Note that div = 1 corresponds to 1-RSB

.

div 1+-RSB bound
1 0.45085965358
2 0.45085113089
4 0.45084699561
8 0.45084570075

16 0.45084535605
32 0.45084526847
64 0.45084524648

128 0.45084524098
256 0.45084523960
512 0.45084523926

1024 0.45084523917
2-RSB 0.45078993583

5. Overview of the interpolation method

The interpolation method is a rigorous technique to prove upper bounds for the free
energy in various models. It has several variants. Originally it was invented by Guerra
[Gue03] in the context of the Sherrington–Kirkpatrick spin glass model. In this section we
explain the technique for the hard-core model, omitting the technical details and assuming
no statistical physics background. We mainly follow the exposition in [ACOG19], where
the closely related problem of the chromatic number was considered, and [PT04].

Given a finite graph 𝐺 = (𝑉,𝐸), the partition function of the hard-core model is defined
as

𝑍𝐺 = 𝑍𝐺,𝜆
..=

∑︁
𝜎∈{0,1}𝑉

∏︁
𝑣∈𝑉

𝜆𝜎𝑣
∏︁
𝑢𝑣∈𝐸

(︂
1 − 1

(︀
{𝜎𝑢 = 𝜎𝑣 = 1}

)︀)︂
,

where 𝜆 > 1 is a parameter often called fugacity. So 𝑍𝐺 counts 0-1 configurations 𝜎 =
(𝜎𝑣)𝑣∈𝑉 on the vertices with no neighboring 1’s, that is, 𝐼 ..= {𝑣 ∈ 𝑉 : 𝜎𝑣 = 1} is an
independent set counted with weight 𝜆|𝐼|. Thus 𝑍𝐺 is simply the sum of these weights for
all independent sets2. Let 𝛼(𝐺) denote the independence number of 𝐺 (i.e., the size of
the largest independent set). Using the simple inequality 𝑍𝐺,𝜆 ≥ 𝜆𝛼(𝐺), one can bound the

2In fact, we should also work with a soft version of 𝑍 (at some positive temperature), where neighboring
1’s are possible but penalized in the partition function. As the temperature goes to zero (i.e., the penalty
increases), we get back the hard-core model in the limit. For the sake of simplicity, we describe the
interpolation method using the hard-core model but keep in mind that a rigorous treatment would need
positive temperatures.
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independence number as follows:

𝛼(𝐺) ≤ log𝑍𝐺,𝜆

log 𝜆
,

which is clearly asymptotically tight for any fixed 𝐺 as 𝜆 → ∞.
We are interested in the asymptotic independence ratio 𝛼*

𝑑 of the random 𝑑-regular graph
G = G(𝑁, 𝑑) as the number of vertices 𝑁 goes to infinity. It follows from the above that for
any 𝜆 the normalized free energy 𝐹𝑁

..= E log𝑍/𝑁 upper bounds 𝛼*
𝑑 log 𝜆. More precisely,

we have

𝛼*
𝑑 ≤ lim

𝑁→∞

EG log𝑍G,𝜆

𝑁 log 𝜆
.

The method is based on an “interpolating” family of models 𝐺𝑡, 𝑡 ∈ [0, 1], with 𝐺0 being
our original model (plus a disjoint part), which is then “continuously transformed” into
𝐺1. The key is to prove that the free energy E log𝑍𝐺𝑡 increases as 𝑡 goes from 0 to 1 by
showing that the derivative is nonnegative along the way:

(6)
𝜕E log𝑍𝐺𝑡

𝜕𝑡
≥ 0 ∀𝑡 ∈ [0, 1].

We will elaborate on this key part of the proof later in Section 5.5. It implies that
E log𝑍𝐺0 ≤ E log𝑍𝐺1 , which will translate to a bound of the form

(7) E log𝑍G ≤ E log 𝑌 − E log 𝑌 ′ + 𝑜(𝑁),

where 𝑌 and 𝑌 ′ are partition functions that are easier to handle. Next we will describe
the models in detail.

5.1. Variables and factors. The models have two types of nodes: variable nodes and
fields (corresponding to local fields in physics). We assign a variable 𝜎𝑣 to any variable
node 𝑣 that ranges over {0, 1}. When we compute the partition function, the sum runs
through all possible configurations 𝜎 = (𝜎𝑣) with the weight of a configuration being the
product of various (penalty and reward) factors. For example, each 𝜎𝑣 = 1 is rewarded with
a 𝜆 > 1 factor, while an edge between two variable nodes 𝑣,𝑣′ forbids that 𝜎𝑣 = 𝜎𝑣′ = 1,
i.e., the factor is

(︀
𝜎𝑣, 𝜎𝑣′

)︀
↦→ 1 − 𝜎𝑣𝜎𝑣′ =

{︃
1 if 𝜎𝑣 = 0 or 𝜎𝑣′ = 0;

0 if 𝜎𝑣 = 𝜎𝑣′ = 1.

A field 𝑢 does not have a variable, instead there is a probability distribution 𝜇𝑢 on
{0, 1} assigned to it. In other words, each field 𝑢 is labelled with a real number 𝑥𝑢 ∈ [0, 1]
denoting the probability of 1: 𝑥𝑢

..= 𝜇𝑢({1}).
If there is an edge between a variable node 𝑣 and a field 𝑢, then we use the following

factor:

𝜎𝑣 ↦→ 1 − 𝑥𝑢𝜎𝑣 =

{︃
1 if 𝜎𝑣 = 0;

𝜇𝑢({0}) = 1 − 𝑥𝑢 if 𝜎𝑣 = 1.

Finally, for an edge between two fields 𝑢,𝑢′ we add the following constant factor (that
does not depend on 𝜎):

1 − 𝑥𝑢𝑥𝑢′ .
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5.2. The models. Now we are ready to describe the models 𝐺𝑡 and the partition functions
𝑌 and 𝑌 ′.

∙ Each model 𝐺𝑡 has 𝑁 variable nodes and 𝑑𝑁 fields. A variable node has 𝑑 half-
edges, each may be connected to another half-edge or to a field.

∙ In 𝐺𝑡 there are (1 − 𝑡)𝑑𝑁/2 edges connecting two fields, the remaining 𝑡𝑑𝑁 fields
are connected to half-edges of variable nodes randomly, and the remaining (1 −
𝑡)𝑑𝑁 half-edges are matched randomly, creating (1−𝑡)𝑑𝑁/2 edges between variable
nodes.

∙ In particular, at 𝑡 = 0 we get the disjoint union of a random 𝑑-regular graph G
(over the variable nodes) and 𝑑𝑁/2 pairs of fields, each pair connected by an edge.
Therefore

log𝑍𝐺0 = log𝑍G + log 𝑌 ′,

where 𝑌 ′ is the partition function of the 𝑑𝑁/2 “field edges”.
∙ At the other endpoint 𝑡 = 1, we have 𝑁 “stars”, each containing one variable node

connected to 𝑑 fields. We denote the corresponding partition function by 𝑌 and
hence write

log𝑍𝐺1 = log 𝑌.

These are random models. Note that for 𝑍G the randomness comes purely from the
underlying random graph structure, while for 𝑌 and 𝑌 ′ it comes from the random labels
𝑥𝑢 of the fields 𝑢 that we will explain next.

In the simplest scenario one fixes a real number 𝑥 ∈ [0, 1] and use 𝑥𝑢 = 𝑥 for each 𝑢. In
this setup 𝑌 and 𝑌 ′ are actually deterministic and can be expressed as products (with the
terms corresponding to the 𝑁 stars and 𝑑𝑁/2 field edges, respectively):

𝑌 =
(︀
1 + 𝜆(1 − 𝑥)𝑑

)︀𝑁
and 𝑌 ′ =

(︀
1 − 𝑥2

)︀𝑑𝑁/2
.

(Note that the model of 𝑌 ′ does not have any variable nodes and the “sum” is simply the
product of constant factors.) Plugging these into (7) we get back the replica symmetric
bound (1).

More generally, one may choose each 𝑥𝑢 independently from a fixed distribution 𝜈 on
[0, 1]. (It is important to use the same 𝜈 for 𝑌 and 𝑌 ′.) The resulting partition functions
can be factorized again and we get a more general version of the RS bound:

𝛼*
𝑑 log 𝜆 ≤

∫︁
[0,1]𝑑

log
(︀
1 + 𝜆(1 − 𝑥1) · · · (1 − 𝑥𝑑)

)︀
d𝜈(𝑥1) · · · d𝜈(𝑥𝑑)

− 𝑑

2

∫︁
[0,1]2

log
(︀
1 − 𝑥1𝑥2

)︀
d𝜈(𝑥1)d𝜈(𝑥2).

Next we explain how a seemingly insignificant modification of the method turns this
approach into a much more powerful tool and resulting in replica symmetry breaking
bounds.

5.3. A weighting scheme. For a countable index set Γ let us fix weights 𝑤𝛾 ≥ 0, 𝛾 ∈ Γ,
with

∑︀
𝛾∈Γ𝑤𝛾 = 1 (essentially a probability distribution on Γ) and an arbitrary collection

of random variables
(︀
𝑥𝛾
)︀
𝛾∈Γ, each 𝑥𝛾 taking values in [0, 1]. For each 𝛾 ∈ Γ we consider a

version 𝑌𝛾 of 𝑌 . To this end we need to take independent copies of the collection
(︀
𝑥𝛾
)︀

for
all fields 𝑢: (︀

𝑥𝛾
𝑢

)︀
𝛾∈Γ has the same joint distribution as

(︀
𝑥𝛾
)︀
𝛾∈Γ.
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We set the label of each field 𝑢 to be 𝑥𝛾
𝑢 and define 𝑌𝛾 to be the corresponding partition

function. We define 𝑌 ′
𝛾 similarly. Then the following weighted version of (7) is also true:

(8) E log𝑍G ≤ E log
∑︁
𝛾∈Γ

𝑤𝛾𝑌𝛾 − E log
∑︁
𝛾∈Γ

𝑤𝛾𝑌
′
𝛾 + 𝑜(𝑁).

This weighted version is (potentially) more general but it seems that we lose the crucial
property of factorization for the formulas inside the log. There is, however, a “magical”
(random) choice of the coefficients 𝑤𝛾 (based on the so-called Derrida–Ruelle cascades)
for which we still have factorization provided that the collection

(︀
𝑥𝛾
)︀

is hierarchically
exchangeable, which notion was introduced in [AP14].

For a given 𝑟 ≥ 1 we use Γ = N𝑟 as the countable index set. For any fixed parameters
0 < 𝑚1, . . . ,𝑚𝑟 < 1, there exist random weights 𝑤𝛾 such that for any given 𝜂(𝑟) of Theorem
2.2 we can define the collection

(︀
𝑥𝛾
)︀

in a way that (8) yields the bound in the theorem.

We define
(︀
𝑥𝛾
)︀

using the notations of Section 2.1. For any 1 ≤ 𝑘 ≤ 𝑟 and any

𝛾1, . . . , 𝛾𝑘 ∈ N we will define a random 𝜂(𝑟−𝑘+1)(𝛾1, . . . , 𝛾𝑘) ∈ 𝒫𝑟−𝑘+1. Since we started
with a deterministic 𝜂(𝑟) in Theorem 2.2 (see the remarks after the theorem), in our case
each 𝜂(𝑟)(𝛾1) ..= 𝜂(𝑟) will be the same for 𝑘 = 1. Given 𝜂(𝑟−𝑘+1)(𝛾1, . . . , 𝛾𝑘) ∈ 𝒫𝑟−𝑘+1, we
define

𝜂(𝑟−𝑘)(𝛾1, . . . , 𝛾𝑘, 𝛾𝑘+1), 𝛾𝑘+1 ∈ N,
to be conditionally independent and distributed as 𝜂(𝑟−𝑘+1)(𝛾1, . . . , 𝛾𝑘). Finally, for each
𝛾 = (𝛾1, . . . , 𝛾𝑟) ∈ N𝑟 we sample 𝑥𝛾 from 𝜂(1)(𝛾1, . . . , 𝛾𝑟). Schematically:

𝜂(𝑟) = 𝜂(𝑟)(𝛾1) → 𝜂(𝑟−1)(𝛾1, 𝛾2) → · · · → 𝜂(1)(𝛾1, . . . , 𝛾𝑟) → 𝑥𝛾.

Now suppose that we have a function 𝑓 : [0, 1]𝑀 → R. Let us take 𝑀 independent copies
of the above sampling scheme. For each fixed 𝛾 ∈ N𝑟 we plug the 𝑀 copies of 𝑥𝛾 into 𝑓
resulting in a random variable 𝑉𝛾. Then one can choose the weights 𝑤𝛾 randomly in such
a way that

E log
∑︁
𝛾∈N𝑟

𝑤𝛾𝑉𝛾 = E log 𝑇𝑟

(︀
𝑉(1,...,1)

)︀
,

where 𝑇𝑟 is defined analogously to Definition 2.1 [PT04, Proposition 2].
We will not elaborate on how the weights 𝑤𝛾 need to be chosen for general 𝑟. Instead,

we focus on the case 𝑟 = 1 which already captures the essence of the method.

5.4. One-step RSB. In this case we simply have Γ = N and each 𝜂(1)(𝛾) is the same
deterministic distribution 𝜂(1) ∈ 𝒫1. In other words, all field labels 𝑥𝛾

𝑢 are IID across all
nodes 𝑢 in all models 𝑌𝛾, 𝑌

′
𝛾 . Next we define the random weights 𝑤𝛾.

Definition 5.1. Given a real number 0 < 𝑚 < 1, let 𝑤̂1 ≥ 𝑤̂2 ≥ . . . be the nonincreasing
enumeration of the points generated by a nonhomogeneous Poisson point process on [0,∞)

with intensity function 𝑡 ↦→ 𝑡−1−𝑚. The sum 𝑊̂ ..=
∑︀

𝑤̂𝛾 is finite almost surely. For 𝛾 ∈ N
let

𝑤𝛾
..= 𝑤̂𝛾

⧸︀
𝑊̂ .

The distribution of (𝑤1, 𝑤2, . . .) is called the Poisson–Dirichlet distribution.

In many statistical physics models the relative cluster sizes are believed to behave as the
Poisson–Dirichlet distribution for some 𝑚. It has the following magical property.
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Lemma 5.2. [PT04, Proposition 1] For any fixed 0 < 𝑚 < 1 let 𝑤𝛾, 𝛾 ∈ N be the random
weights as above. Then for any IID sequence 𝑋𝛾 > 0 with E𝑋2

1 < ∞ we have

E log
∞∑︁
𝛾=1

𝑤𝛾𝑋𝛾 =
1

𝑚
logE𝑋𝑚

1 .

Note that on the left we take expectation both in 𝑤𝛾 and in 𝑋𝛾.

Applying the lemma for 𝑋𝛾 = 𝑌𝛾 and also for 𝑋𝛾 = 𝑌 ′
𝛾 , the bound (8) turns into

E log𝑍G ≤ 1

𝑚
logE𝑌 𝑚

1 − 1

𝑚
logE

(︀
𝑌 ′
1)𝑚 + 𝑜(𝑁)

=
1

𝑚
𝑁 logE

(︀
1 + 𝜆(1 − 𝑥1) · · · (1 − 𝑥𝑑)

)︀𝑚 − 1

𝑚

𝑑𝑁

2
logE(1 − 𝑥1𝑥2)

𝑚 + 𝑜(𝑁),

where 𝑥1, . . . , 𝑥𝑑 are IID with distribution 𝜂(1). Hence we indeed get back Theorem 2.2 for
𝑟 = 1.

5.5. Monotonicity of the free energy. Now we turn to the final ingredient (the reason
why all this provides an upper bound): the fact that the free energy of the model 𝐺𝑡 is
monotone increasing as 𝑡 goes from 0 to 1. In other words, the derivative (6) is nonnegative.

In 𝐺𝑡 there are three types of edges (based on whether there are 0, 1, or 2 variable nodes
among the endpoints) and we defined 𝐺𝑡 by prescribing the number of edges for all three
types. In fact, it is better to define 𝐺𝑡 in a way that there is a small portion of the variable
nodes with degree 𝑑− 1. Intuitively it is clear that we have to compare the effect (on the
free energy) of the addition of an edge of each of the three types. (See [ACOG19, Section
4.2] for an elegant argument justifying this intuition.)

Suppose that we have any fixed model on 𝑁 variable nodes with partition function 𝑍,
where we distinguish some of the nodes as cavity nodes (in our setting they belong to the
variable nodes that do not have full degree 𝑑 but only degree 𝑑− 1). The number of cavity
nodes should be small compared to 𝑁 but should converge to ∞ as 𝑁 → ∞. We want to
understand the effect (on log𝑍) of the addition of a new factor to the model. In our case
this will be the addition of either one of the three types of edges:

∙ We choose two cavity nodes uniformly and independently and add an edge between
them: resulting in a random partition function 𝑍cc.

∙ We add two new fields and add an edge between them: resulting in a random
partition function 𝑍ff .

∙ We choose a cavity node uniformly and connect it to a new random field: resulting
in a random partition function 𝑍cf .

What we need to prove is that

(9)
(︀
E log𝑍cc − log𝑍

)︀
+
(︀
E log𝑍ff − log𝑍

)︀
− 2
(︀
E log𝑍cf − log𝑍

)︀
≤ 0.

To incorporate the Replica Symmetry Breaking scenario we will have an additional
variable 𝛾: let Ω = {0, 1}𝑁 ×Γ where each 𝜔 = (𝜎1, . . . , 𝜎𝑁 , 𝛾) ∈ Ω encodes a configuration
of 𝑁 variables 𝜎𝑖 and a state 𝛾 ranging over a countable set Γ.

Imagine that at a particular stage of the interpolation we see a certain deterministic
model. It is actually not important what the model is; the point is that it assigns a weight
Ψ(𝜔) to each configuration 𝜔 ∈ Ω. If we normalize these weights with the corresponding
partition function 𝑍 =

∑︀
𝜔∈Ω Ψ(𝜔), then we get a probability distribution on Ω, called the

Boltzmann distribution. It is a simple fact that adding a new weight factor Ψ′(𝜔) to the
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model changes the free energy log𝑍 by logE𝜔Ψ′(𝜔), where E𝜔 means taking expectation
w.r.t. the Boltzmann distribution. It follows that

E log𝑍cc − log𝑍 = E𝑐1,𝑐2 logE𝜔

(︀
1 − 𝜎𝑐1𝜎𝑐2

)︀
;

E log𝑍ff − log𝑍 = E𝑥1,𝑥2 logE𝜔

(︀
1 − 𝑥𝛾

1𝑥
𝛾
2

)︀
;

E log𝑍cf − log𝑍 = E𝑐1,𝑥1 logE𝜔

(︀
1 − 𝜎𝑐1𝑥

𝛾
1

)︀
,

where 𝑐1, 𝑐2 are chosen uniformly and independently from the set 𝐶 ⊆ {1, . . . , 𝑁} of cav-
ities, and 𝑥1 = (𝑥𝛾

1)𝛾∈Γ and 𝑥2 = (𝑥𝛾
2)𝛾∈Γ are two independent collections of random

variables with the same joint distribution. Then (9) follows from the following lemma.

Lemma 5.3. Let 𝑋 and 𝑌 be random Ω → [0, 1] functions with independent copies 𝑋1, 𝑋2

and 𝑌1, 𝑌2, respectively. Then for any random 𝜔 ∈ Ω we have

E𝑋1,𝑋2 log

(︂
1 − E𝜔𝑋1(𝜔)𝑋2(𝜔)

)︂
+ E𝑌1,𝑌2 log

(︂
1 − E𝜔𝑌1(𝜔)𝑌2(𝜔)

)︂
≤ 2E𝑋,𝑌 log

(︂
1 − E𝜔𝑋(𝜔)𝑌 (𝜔)

)︂
.

Proof. Due to the identity

log(1 − 𝑥) = −
∞∑︁
ℓ=1

𝑥ℓ

ℓ
,

it suffices to show for each ℓ ≥ 1 that

(10) E𝑋1,𝑋2

(︂
E𝜔𝑋1(𝜔)𝑋2(𝜔)

)︂ℓ

+ E𝑌1,𝑌2

(︂
E𝜔𝑌1(𝜔)𝑌2(𝜔)

)︂ℓ

− 2E𝑋,𝑌

(︂
E𝜔𝑋(𝜔)𝑌 (𝜔)

)︂ℓ

≥ 0,

which can be easily seen to be equivalent to

E𝜔1,...,𝜔ℓ

(︂
E𝑋

ℓ∏︁
𝑖=1

𝑋(𝜔𝑖) − E𝑌

ℓ∏︁
𝑖=1

𝑌 (𝜔𝑖)

)︂2

≥ 0,

where 𝜔1, . . . , 𝜔ℓ are independent copies of 𝜔.
Indeed, we may rewrite the first term of (10) as

E𝑋1,𝑋2E𝜔1,...,𝜔ℓ

ℓ∏︁
𝑖=1

𝑋1(𝜔𝑖)𝑋2(𝜔𝑖) = E𝜔1,...,𝜔ℓ

(︂
E𝑋1

ℓ∏︁
𝑖=1

𝑋1(𝜔𝑖)

)︂(︂
E𝑋2

ℓ∏︁
𝑖=1

𝑋2(𝜔𝑖)

)︂

= E𝜔1,...,𝜔ℓ

(︂
E𝑋

ℓ∏︁
𝑖=1

𝑋(𝜔𝑖)

)︂2

.

Similar manipulations can be carried out for the two other terms. �
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[Csó16] Endre Csóka. Independent sets and cuts in large-girth regular graphs, 2016.
[DSS16] Jian Ding, Allan Sly, and Nike Sun. Maximum independent sets on random regular graphs.

Acta Math., 217(2):263–340, 2016.
[F L92] A. M. Frieze and T.  Luczak. On the independence and chromatic numbers of random regular

graphs. J. Combin. Theory Ser. B, 54(1):123–132, 1992.
[FL03] Silvio Franz and Michele Leone. Replica bounds for optimization problems and diluted spin

systems. Journal of Statistical Physics, 111(3):535–564, May 2003.
[FLT03] Silvio Franz, Michele Leone, and Fabio Lucio Toninelli. Replica bounds for diluted non-

poissonian spin systems. Journal of Physics A, 36:10967–10985, 2003.
[GS14] David Gamarnik and Madhu Sudan. Limits of local algorithms over sparse random graphs.

Proceedings of the 5-th Innovations in Theoretical Computer Science conference, ACM Special
Interest Group on Algorithms and Computation Theory, 2014.

[Gue03] Francesco Guerra. Broken replica symmetry bounds in the mean field spin glass model. Com-
munications in Mathematical Physics, 233(1):1–12, Feb 2003.

[Hop08] C. Hoppen. Properties with graphs of large girth. PhD Thesis, University of Waterloo, 2008.
[HW18] Carlos Hoppen and Nicholas Wormald. Local algorithms, regular graphs of large girth, and

random regular graphs. Combinatorica, 38(3):619–664, Jun 2018.
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[MP01] M. Mézard and G. Parisi. The Bethe lattice spin glass revisited. The European Physical Journal

B - Condensed Matter and Complex Systems, 20(2):217–233, Mar 2001.
[Pan13] Dmitry Panchenko. The Sherrington–Kirkpatrick Model. Springer Monographs in Mathematics.

Springer, New York, NY, 2013.
[PT04] Dmitry Panchenko and Michel Talagrand. Bounds for diluted mean-fields spin glass models.

Probability Theory and Related Fields, 130(3):319–336, Nov 2004.
[Riv05] Olivier Rivoire. Phases vitreuses, optimisation et grandes déviations. Theses, Université Paris
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Appendix

Below we list our best 𝑟-RSB bounds of 𝛼*
𝑑 for each degree 3 ≤ 𝑑 ≤ 19 in the following

format: 𝑟 [𝑛𝑟−1, . . . , 𝑛1] bound (see Remark 2.4 for the definition of 𝑛𝑘).
For comparison, we included 𝑟 = 1, that is, the 1-RSB bound from [LO18] that we

improve on.

degree: 3
1 0.450859654
2 [32] 0.450789936
3 [8, 4] 0.450786018
4 [8, 2, 2] 0.450785346
5 [4, 2, 2, 2] 0.450785210

degree: 4
1 0.411194564
2 [18] 0.411100755
3 [6, 4] 0.411095101
4 [4, 3, 2] 0.411094131

degree: 5
1 0.379268170
2 [8] 0.379176250
3 [3, 3] 0.379170372
4 [2, 2, 3] 0.379170310

degree: 6
1 0.352984549
2 [7] 0.352905514
3 [4, 2] 0.352900232
4 [3, 2, 2] 0.352899485

degree: 7
1 0.330884354
2 [5] 0.330821477
3 [5, 2] 0.330817014

degree: 8
1 0.311972567
2 [6] 0.311925387
3 [3, 2] 0.311922227

degree: 9
1 0.295553902
2 [5] 0.295520273
3 [2, 2] 0.295519497

degree: 10
1 0.281128003
2 [5] 0.281105186
3 [2, 2] 0.281104953

degree: 11
1 0.268324856
2 [7] 0.268310124

degree: 12
1 0.256864221
2 [5] 0.256855205

degree: 13
1 0.246529415
2 [6] 0.246524236

degree: 14
1 0.237149865
2 [4] 0.237147193

degree: 15
1 0.228589175
2 [4] 0.228587914

degree: 16
1 0.220736776
2 [4] 0.220736278

degree: 17
1 0.213501935208
1+ 0.213501905193

degree: 18
1 0.206809394782
1+ 0.206809390398
2 [2] 0.206809390050

degree: 19
1 0.2005961242697
1+ 0.2005961242567
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