Real Functions and Measures, BSM, Fall 2014

Exercise sheet: Topological spaces and σ-algebras

1. Let (X, τ) be a topological space. For a non-empty subset $H \subset X$ we define $\left.\tau\right|_{H}=\{G \cap H: G \in \tau\}$. Show that $\left(H,\left.\tau\right|_{H}\right)$ is also a topological space.
$\left(H,\left.\tau\right|_{H}\right)$ is called the subspace of (X, τ), and the elements of $\left.\tau\right|_{H}$ are the relative open sets in H.
2. Find all possible homeomorphic pairs among the following subspaces of \mathbb{R} :

- $(0,1)$;
- $[2,5]$;
- $[-1,3)$;
- $(1,4]$;
- \mathbb{R};
- $[0, \infty)$;
- $(-\infty, 1)$;
- the set of rational numbers;
- the set of irrational numbers;
- the set of integers;
- the set of positive integers;
- the set of positive rationals;
- the set of non-negative rationals.

3. Show that symbols \perp and $<$ (as subspaces of \mathbb{R}^{2}) are not homeomorphic to each other.
4. Find all possible homeomorphic pairs among the following subspaces of \mathbb{R}^{2} :

- open disk: the set of all points of distance less than 1 from the origin;
- $(0,1) \times(0,1)$;
- $[0,1] \times[0,1]$;
- closed disk: the set of all points of distance at most 1 from the origin;
- circle: the set of all points of distance 1 from the origin;
- open linear segment;
- two intersecting lines;
- punctured circle: the set of all points of distance 1 from the origin except the point $(1,0)$.
5.* Prove that the subspaces $\mathbb{Q} \subset \mathbb{R}$ and $\mathbb{Q}^{2} \subset \mathbb{R}^{2}$ are homeomorphic topological spaces.

6. Let τ_{e} denote the usual (Euclidean) topology on \mathbb{R}, and τ_{s} the topology generated by the half closed intervals $[a, b) ; a, b \in \mathbb{R}$. (τ_{s} is called the Sorgenfrey topology.)
a) Show that (\mathbb{R}, τ_{e}) and (\mathbb{R}, τ_{s}) are not homeomorphic spaces.
b) Show that the Borel σ-algebras are the same in the two spaces.
7. Let \mathcal{M} denote the σ-algebra containing the countable subsets of \mathbb{R} and their complements (the so-called co-countable subsets). Is $\sin (x)$ a measurable function with respect to \mathcal{M} ?
8. Let \mathcal{B} denote σ-algebra generated by the open intervals in \mathbb{R}. Describe the σ-algebra generated by
a) closed intervals;
b) half-open intervals $[a, b) ; a, b \in \mathbb{R}$;
c) closed intervals with rational endpoints.
9. Describe the σ-algebra \mathcal{M} generated by the one-element subsets $\{q\} ; q \in \mathbb{Q}$.
a) Is there a function that is \mathcal{B}-measurable but not \mathcal{M}-measurable?
b) Is there a function that is \mathcal{M}-measurable but not \mathcal{B}-measurable?
10. What is the smallest σ-algebra \mathcal{M} on \mathbb{R} such that every monotone real function is measurable w.r.t. \mathcal{M} ?
