Real Functions and Measures, BSM, Fall 2014

Exercise sheet: Topological spaces and σ -algebras

1. Let (X, τ) be a topological space. For a non-empty subset $H \subset X$ we define $\tau|_H = \{G \cap H : G \in \tau\}$. Show that $(H, \tau|_H)$ is also a topological space.

 $(H, \tau|_H)$ is called the subspace of (X, τ) , and the elements of $\tau|_H$ are the relative open sets in H.

2. Find all possible homeomorphic pairs among the following subspaces of \mathbb{R} :

- (0,1);
- [2,5];
- [-1,3);
- (1,4];
- R;
- $[0,\infty);$
- $(-\infty, 1);$
- the set of rational numbers;
- the set of irrational numbers;
- the set of integers;
- the set of positive integers;
- the set of positive rationals;
- the set of non-negative rationals.

3. Show that symbols \perp and < (as subspaces of \mathbb{R}^2) are not homeomorphic to each other.

4. Find all possible homeomorphic pairs among the following subspaces of \mathbb{R}^2 :

- open disk: the set of all points of distance less than 1 from the origin;
- $(0,1) \times (0,1);$
- $[0,1] \times [0,1];$
- closed disk: the set of all points of distance at most 1 from the origin;
- circle: the set of all points of distance 1 from the origin;
- open linear segment;
- two intersecting lines;
- punctured circle: the set of all points of distance 1 from the origin except the point (1,0).

5.* Prove that the subspaces $\mathbb{Q} \subset \mathbb{R}$ and $\mathbb{Q}^2 \subset \mathbb{R}^2$ are homeomorphic topological spaces.

6. Let τ_e denote the usual (Euclidean) topology on \mathbb{R} , and τ_s the topology generated by the half closed intervals [a,b); $a, b \in \mathbb{R}$. (τ_s is called the *Sorgenfrey* topology.)

- a) Show that (\mathbb{R}, τ_e) and (\mathbb{R}, τ_s) are not homeomorphic spaces.
- b) Show that the Borel $\sigma\text{-algebras}$ are the same in the two spaces.

7. Let \mathcal{M} denote the σ -algebra containing the countable subsets of \mathbb{R} and their complements (the so-called *co-countable subsets*). Is $\sin(x)$ a measurable function with respect to \mathcal{M} ?

8. Let \mathcal{B} denote σ -algebra generated by the open intervals in \mathbb{R} . Describe the σ -algebra generated by

- a) closed intervals;
- b) half-open intervals $[a, b); a, b \in \mathbb{R};$
- c) closed intervals with rational endpoints.
- **9.** Describe the σ -algebra \mathcal{M} generated by the one-element subsets $\{q\}; q \in \mathbb{Q}$.
- a) Is there a function that is \mathcal{B} -measurable but not \mathcal{M} -measurable?
- b) Is there a function that is \mathcal{M} -measurable but not \mathcal{B} -measurable?

10. What is the smallest σ -algebra \mathcal{M} on \mathbb{R} such that every monotone real function is measurable w.r.t. \mathcal{M} ?