Real Functions and Measures, BSM, Fall 2014 Assignment 1

1. a) Prove that any open set in \mathbb{R} can be expressed as the union of **countably** many open intervals.

b) Prove that any open set in \mathbb{R}^2 can be expressed as the union of **countably** many open boxes.

2. Let X be an uncountable set and \mathcal{M} be the σ -algebra generated by the finite subsets of X. Describe \mathcal{M} and the \mathcal{M} -measurable $X \to \mathbb{R}$ functions. Explain your answer!

3. Let (X, \mathcal{M}) be a measurable space and let $f: X \to \mathbb{R}$ be a real-valued function. Prove that if $\{x: f(x) \ge r\} \in \mathcal{M}$ for every rational number r, then f is measurable. **4.** Let (X, \mathcal{M}) be a measurable space. Suppose that $f: X \to [-\infty, \infty]$ and $g: X \to [-\infty, \infty]$ are measurable functions. Prove that

$${x: f(x) < g(x)} \in \mathcal{M} \text{ and } {x: f(x) = g(x)} \in \mathcal{M}.$$

5. Prove that the set of points at which a sequence of measurable real-valued functions converges (to a finite limit) is measurable.