Real Functions and Measures, BSM, Fall 2014 Assignment 3

1. Suppose that $f_n: X \to [0, \infty)$ are measurable functions on a measure space (X, \mathcal{M}, μ) with the property that $f_1 \ge f_2 \ge f_3 \ge \ldots$ and $f_1 \in L^1(\mu)$. a) Prove that

$$\int_X \left(\lim_{n \to \infty} f_n(x)\right) \, d\mu = \lim_{n \to \infty} \int_X f_n \, d\mu.$$

b) Is the statement true without the assumption $f_1 \in L^1(\mu)$?

2. Suppose $\mu(X) < \infty$ for a measure space (X, \mathcal{M}, μ) . Prove that if the functions $f_n: X \to \mathbb{C}$ are uniformly bounded (that is, there exists a K > 0 such that $|f_n(x)| \leq K$ for all $n \in \mathbb{N}$ and all $x \in X$) and $f(x) = \lim_{n \to \infty} f_n(x)$ exists for all $x \in X$, then

$$\lim_{n \to \infty} \int_X f_n \, d\mu = \int_X f \, d\mu.$$

3. Let (X, \mathcal{M}, μ) be a measure space and $\alpha \in (0, \infty)$. Suppose that $\int_X f d\mu = c \in (0, \infty)$ for a measurable function $f: X \to [0, \infty]$. Prove that

$$\lim_{n \to \infty} \int_X n \log \left(1 + (f/n)^{\alpha} \right) \, d\mu = \begin{cases} \infty & \text{if } 0 < \alpha < 1, \\ c & \text{if } \alpha = 1, \\ 0 & \text{if } 1 < \alpha < \infty. \end{cases}$$

(Hint: if $\alpha \geq 1$, the integrands are dominated by αf ; if $\alpha < 1$, Fatou's lemma can be applied.)

4. Find a measure space (X, \mathcal{M}, μ) and measurable functions $f_n: X \to [0, \infty)$ for which the inequality in Fatou's lemma is strict, that is,

$$\int_X \left(\liminf_{n \to \infty} f_n\right) \, d\mu < \liminf_{n \to \infty} \int_X f_n \, d\mu.$$

5. Let (X, \mathcal{M}, μ) be a measure space and let $f \in L^1(\mu)$. a) Show that for any $\varepsilon > 0$ there exists an $n_0 \in \mathbb{N}$ such that

$$\int_{\{x:|f(x)|\geq n_0\}} |f| \, d\mu < \varepsilon$$

b) Prove that for any $\varepsilon > 0$ there exists a $\delta > 0$ such that whenever $\mu(E) < \delta$ for some measurable set E we have $\int_E |f| d\mu < \varepsilon$.