Real Functions and Measures, BSM, Fall 2014 Assignment 4

1. Suppose that $f_n: X \to [0, \infty]$ are measurable functions such that $\int_X f_n d\mu < 1/n^2$. Is it true that $f_n \to 0$ as $n \to \infty \mu$ -almost everywhere? Explain your answer. **2.** We proved the following theorem in class. If E_1, E_2, \ldots are measurable sets with $\sum_{n=1}^{\infty} \mu(E_n) < \infty$, then μ -almost all $x \in X$ lie in finitely many of the sets E_n . Give a proof that does not use integration at all.

(Hint: consider the set $A = \bigcap_{n_0=1}^{\infty} \bigcup_{n=n_0}^{\infty} E_n$.)

3. Consider the following four statements.

- 1. If f_1 and f_2 are upper semi-continuous, then $f_1 + f_2$ is upper semi-continuous.
- 2. If f_1 and f_2 are lower semi-continuous, then $f_1 + f_2$ is lower semi-continuous.
- 3. If each f_n is upper semi-continuous, then $\sum_{n=1}^{\infty} f_n$ is upper semi-continuous.
- 4. If each f_n is lower semi-continuous, then $\sum_{n=1}^{\infty} f_n$ is lower semi-continuous.

Which of the above statements are true if the functions f_n are

- a) $\mathbb{R} \to [0,\infty);$
- b) $\mathbb{R} \to \mathbb{R};$
- c) $X \to [0, \infty)$ for a general topological space X?

4. For a function $f : \mathbb{R} \to \mathbb{C}$ we define

$$\varphi(x,\delta) = \sup \left\{ |f(s) - f(t)| : s, t \in (x - \delta, x + \delta) \right\};$$

$$\varphi(x) = \inf \left\{ \varphi(x,\delta) : \delta > 0 \right\}.$$

a) Show that φ is upper semi-continuous.

b) Prove that f is continuous at $x \in \mathbb{R}$ if and only if $\varphi(x) = 0$.

c) Show that the set of points of continuity for any $\mathbb{R} \to \mathbb{C}$ function is a G_{δ} set (that is, it can be expressed as the countable intersection of open sets) and hence Borel.

d) Generalize the above statements for $X \to \mathbb{R}$ functions where X is a general topological space.

5. Let (X, ϱ) be a metric space. For any non-empty set $E \subset X$ we define the function $\varrho^E \colon X \to \mathbb{R}$ as follows:

$$\varrho^E(x) = \inf \left\{ \varrho(x, y) : y \in E \right\}.$$

a) Show that ρ^E is a continuous function.

b) What is the set $\{x : \rho^E(x) = 0\}$?

c) Let F be a closed and U an open subset of X such that $F \subset U$. Construct a continuous function $f: X \to [0, 1]$ such that f(x) = 1 for $x \in F$ and f(x) = 0 for $x \notin U$.