Real Functions and Measures, BSM, Fall 2014

Assignment 4

1. Suppose that $f_{n}: X \rightarrow[0, \infty]$ are measurable functions such that $\int_{X} f_{n} d \mu<$ $1 / n^{2}$. Is it true that $f_{n} \rightarrow 0$ as $n \rightarrow \infty \mu$-almost everywhere? Explain your answer.
2. We proved the following theorem in class.

If E_{1}, E_{2}, \ldots are measurable sets with $\sum_{n=1}^{\infty} \mu\left(E_{n}\right)<\infty$, then μ-almost all $x \in X$ lie in finitely many of the sets E_{n}.
Give a proof that does not use integration at all.
(Hint: consider the set $A=\bigcap_{n_{0}=1}^{\infty} \bigcup_{n=n_{0}}^{\infty} E_{n}$.)
3. Consider the following four statements.

1. If f_{1} and f_{2} are upper semi-continuous, then $f_{1}+f_{2}$ is upper semi-continuous.
2. If f_{1} and f_{2} are lower semi-continuous, then $f_{1}+f_{2}$ is lower semi-continuous.
3. If each f_{n} is upper semi-continuous, then $\sum_{n=1}^{\infty} f_{n}$ is upper semi-continuous.
4. If each f_{n} is lower semi-continuous, then $\sum_{n=1}^{\infty} f_{n}$ is lower semi-continuous.

Which of the above statements are true if the functions f_{n} are
a) $\mathbb{R} \rightarrow[0, \infty)$;
b) $\mathbb{R} \rightarrow \mathbb{R}$;
c) $X \rightarrow[0, \infty)$ for a general topological space X ?
4. For a function $f: \mathbb{R} \rightarrow \mathbb{C}$ we define

$$
\begin{array}{r}
\varphi(x, \delta)=\sup \{|f(s)-f(t)|: s, t \in(x-\delta, x+\delta)\} \\
\varphi(x)=\inf \{\varphi(x, \delta): \delta>0\}
\end{array}
$$

a) Show that φ is upper semi-continuous.
b) Prove that f is continuous at $x \in \mathbb{R}$ if and only if $\varphi(x)=0$.
c) Show that the set of points of continuity for any $\mathbb{R} \rightarrow \mathbb{C}$ function is a G_{δ} set (that is, it can be expressed as the countable intersection of open sets) and hence Borel.
d) Generalize the above statements for $X \rightarrow \mathbb{R}$ functions where X is a general topological space.
5. Let (X, ϱ) be a metric space. For any non-empty set $E \subset X$ we define the function $\varrho^{E}: X \rightarrow \mathbb{R}$ as follows:

$$
\varrho^{E}(x)=\inf \{\varrho(x, y): y \in E\} .
$$

a) Show that ϱ^{E} is a continuous function.
b) What is the set $\left\{x: \varrho^{E}(x)=0\right\}$?
c) Let F be a closed and U an open subset of X such that $F \subset U$. Construct a continuous function $f: X \rightarrow[0,1]$ such that $f(x)=1$ for $x \in F$ and $f(x)=0$ for $x \notin U$.

