Real Functions and Measures, BSM, Fall 2014 Assignment 6

1. The Cantor function $f: [0,1] \to [0,1]$ is defined as follows. Let f(1) = 1. For any $0 \le x < 1$ we express x in base 3: $x = 0.a_1a_2a_3...$, where we exclude representations for which $a_n = a_{n+1} = a_{n+2} = ... = 2$ for some n. First we take the first digit a_k that is equal to 1 (if exists) and replace all subsequent digits by 0. (If x contains no digit equal to 1, then we leave x as it is.) Then we replace each digit 2 by 1, consider the obtained 0-1 sequence in base 2, and we define f(x) to be the real number corresponding to this binary representation.

a) Show that f is constant on each of the "middle third intervals" in the complement of the Cantor set.

- b) Write f as the limit of piecewise linear functions.
- c) Show that f is continuous.
- d) Determine the integral $\int_{[0,1]} f d\lambda$.

2. At the beginning of this term we defined the Lebesgue outer measure as

$$\lambda^*(E) := \inf\left\{\sum_{n=1}^{\infty} |b_n - a_n| : E \subset \bigcup_{n=1}^{\infty} [a_n, b_n)\right\}$$

for any $E \subset \mathbb{R}$.

Now we have another definition of the Lebesgue measure, via the Riesz Representation Theorem. In a nuthsell: we defined the positive linear functional $\Lambda: C_c(\mathbb{R}) \to \mathbb{C}$ as the limit of the functionals $\Lambda_n f = 2^{-n} \sum_{x \in P_n} f(x)$, where P_n denotes the lattice $\{a2^{-n} : a \in \mathbb{Z}\}$. In the proof of the Riesz Representation Theorem for any such linear functional we defined an outer measure μ as follows:

for open G:
$$\mu(G) := \sup\{\Lambda f : f \prec G\};$$

for arbitrary E: $\mu(E) := \inf\{\mu(G) : E \subseteq G \text{ open}\}.$

We showed that μ is an outer measure and that there exists a complete σ -algebra (containing the Borel sets) on which μ is a measure.

Prove that our original definition λ^* coincides with the outer measure μ obtained in the Riesz Representation Theorem.

(You can use the following facts: (1) if I is an interval, then $\mu(I)$ is equal to the length of the interval; (2) any open set in \mathbb{R} can be written as the **disjoint** union of at most countably many open intervals; (3) μ is a measure on Borel sets.)

3. For any fixed $x \in \mathbb{R}$ let L_x denote the vertical line $\{(x, y) : y \in \mathbb{R}\}$ and let $\pi : \mathbb{R}^2 \to \mathbb{R}$ be the projection map $(x, y) \mapsto y$. Set

$$\tau := \left\{ G \subseteq \mathbb{R}^2 : \pi(G \cap L_x) \text{ is open for all } x \in \mathbb{R} \right\}.$$

a) Show that (\mathbb{R}^2, τ) is a locally compact topological space.

b) Prove that $K \subseteq \mathbb{R}^2$ is compact if and only if $\pi(K \cap L_x) \subseteq \mathbb{R}$ is compact for all

x and $K \cap L_x = \emptyset$ for all but finitely many x. c) For any compactly supported continuous function f on this space let

$$\Lambda f := \sum_{x \in \mathbb{R}} \int_{\mathbb{R}} f(x, y) \, dy.$$

Show that Λ is a positive linear functional and find the representing measure μ .

4. A measurable set A of a measure space (X, \mathcal{M}, μ) is said to be an *atom* (w.r.t. μ) if $\mu(A) > 0$ and for every $E \subset A$ either $\mu(E) = 0$ or $\mu(A \setminus E) = 0$.

a) Find all atoms in the space $(\mathbb{R}, P(\mathbb{R}), \text{counting measure})$.

b) Let μ be a finite Borel measure on \mathbb{R} . Show that every atom A contains a point $x \in A$ such that $\mu(A) = \mu(\{x\})$.

c) Let A be an atom in a measure space (X, \mathcal{M}, μ) . Prove that any measurable function $f: X \to \mathbb{R}$ is constant almost everywhere on A.

5.* (extra problem, no points) Let (X, \mathcal{M}, μ) be an atom-free measure space with $\mu(X) = 1$. Prove that μ takes every value in [0, 1].