Real Functions and Measures, BSM, Fall 2014

Assignment 7

1. Let (X, τ) be a topological space and \mathcal{B} the Borel σ-algebra (that is, the σ algebra generated by $\tau)$. Let $Y \subset X$ be an arbitrary subset.
a) Show that $\left(Y,\left.\tau\right|_{Y}\right)$ is a topological space, where

$$
\left.\tau\right|_{Y} \stackrel{\text { def }}{=}\{G \cap Y: G \in \tau\} .
$$

b) Let \mathcal{B}_{Y} be the Borel σ-algebra of $\left(Y,\left.\tau\right|_{Y}\right)$, and

$$
\left.\mathcal{B}\right|_{Y} \stackrel{\text { def }}{=}\{B \cap Y: B \in \mathcal{B}\} .
$$

Show that $\left.\mathcal{B}\right|_{Y}$ is a σ-algebra that contains \mathcal{B}_{Y}.
c) Prove that $\left.\mathcal{B}\right|_{Y}=\mathcal{B}_{Y}$.
(Hint: to show that $B \cap Y \in \mathcal{B}_{Y}$ for any $B \in \mathcal{B}$, prove that $\mathcal{M}=\left\{E: E \cap Y \in \mathcal{B}_{Y}\right\}$ is a σ-algebra that contains τ.)
2. We identify \mathbb{R} with the x-axis $\{(x, 0): x \in \mathbb{R}\}$ of \mathbb{R}^{2}. Are the following statements true?
a) If B is Borel set in \mathbb{R}^{2}, then $B \cap \mathbb{R}$ is a Borel set in \mathbb{R}.
b) If $E \subset \mathbb{R}^{2}$ is Lebesque measurable in \mathbb{R}^{2}, then $E \cap \mathbb{R}$ is Lebesque measurable in \mathbb{R}.
3. Prove the following statements.
a) If $A, B \subset \mathbb{R}$ are open, then so is $A \times B \subset \mathbb{R}^{2}$.
b) If $A, B \subset \mathbb{R}$ are closed, then so is $A \times B \subset \mathbb{R}^{2}$.
c) If $A, B \subset \mathbb{R}$ are G^{δ}, then so is $A \times B \subset \mathbb{R}^{2}$.
d) If $A, B \subset \mathbb{R}$ are F^{σ}, then so is $A \times B \subset \mathbb{R}^{2}$.
e) If $A, B \subset \mathbb{R}$ are Borel, then so is $A \times B \subset \mathbb{R}^{2}$.
(Hint: $A \times B=(A \times \mathbb{R}) \cap(\mathbb{R} \times B)$.)
f) If $A, B \subset \mathbb{R}$ are Lebesgue measurable, then so is $A \times B \subset \mathbb{R}^{2}$.
(Hint: use the fact that $E \subseteq \mathbb{R}^{k}$ is Lebesque measurable if and only if there exist an F_{σ}-set E_{1} and a G_{δ}-set E_{2} such that $E_{1} \subseteq E \subseteq E_{2}$ and $\lambda\left(E_{2} \backslash E_{1}\right)=0$. In one dimension the latter means that $E_{2} \backslash E_{1}$ can be covered by countably many intervals with arbitrary small total length.)
4. For an $\mathbb{R} \rightarrow \mathbb{R}$ function f let

$$
A_{f} \stackrel{\text { def }}{=}\{(x, y): y<f(x)\} \subset \mathbb{R}^{2} .
$$

a) Express A_{f} as the union of countably many sets of the form $E \times(-\infty, t)$.
b) Prove that f is Borel measurable if and only if $A_{f} \subset \mathbb{R}^{2}$ is a Borel set.
5. Let (X, \mathcal{M}) be a measurable space. A finite signed measure on (X, \mathcal{M}) is a mapping $\mu: \mathcal{M} \rightarrow \mathbb{R}$ such that $\mu(\emptyset)=0$ and μ is σ-additive, that is,

$$
\mu\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\sum_{n=1}^{\infty} \mu\left(E_{n}\right)
$$

for any sequence E_{1}, E_{2}, \ldots of pairwise disjoint measurable sets.
Given a finite signed measure μ we define $\mu^{+}, \mu^{-}: \mathcal{M} \rightarrow[0, \infty]$ as follows:

$$
\begin{gathered}
\mu^{+}(E) \stackrel{\text { def }}{=} \sup \{\mu(A): A \subseteq E ; A \in \mathcal{M}\} \\
\mu^{-}(E) \stackrel{\text { def }}{=}-\inf \{\mu(A): A \subseteq E ; A \in \mathcal{M}\}
\end{gathered}
$$

a) Show that $\mu^{-}=(-\mu)^{+}$.
b) Prove that μ^{+}and μ^{-}are measures.
c) Show that $\mu^{+}(X)$ and $\mu^{-}(X)$ are finite.
(μ^{+}and μ^{-}are called the positive part/positive variation and the negative part/negative variation of μ, respectively. It can be shown that $\mu=\mu^{+}-\mu^{-}$.)
6.* (extra problem, no points) Let f and A_{f} be as in Question 4. Prove that f is Lebesque measurable if and only if $A_{f} \subset \mathbb{R}^{2}$ is Lebesgue measurable.

