Real Functions and Measures, BSM, Fall 2014 Assignment 7

1. Let (X, τ) be a topological space and \mathcal{B} the Borel σ -algebra (that is, the σ -algebra generated by τ). Let $Y \subset X$ be an arbitrary subset. a) Show that $(Y, \tau|_Y)$ is a topological space, where

$$\tau|_{Y} \stackrel{\text{def}}{=} \{ G \cap Y : G \in \tau \}.$$

b) Let \mathcal{B}_Y be the Borel σ -algebra of $(Y, \tau|_Y)$, and

$$\mathcal{B}|_{Y} \stackrel{\text{def}}{=} \{B \cap Y : B \in \mathcal{B}\}.$$

Show that $\mathcal{B}|_{Y}$ is a σ -algebra that contains \mathcal{B}_{Y} .

c) Prove that $\mathcal{B}|_{Y} = \mathcal{B}_{Y}$.

(Hint: to show that $B \cap Y \in \mathcal{B}_Y$ for any $B \in \mathcal{B}$, prove that $\mathcal{M} = \{E : E \cap Y \in \mathcal{B}_Y\}$ is a σ -algebra that contains τ .)

2. We identify \mathbb{R} with the x-axis $\{(x,0) : x \in \mathbb{R}\}$ of \mathbb{R}^2 . Are the following statements true?

a) If B is Borel set in \mathbb{R}^2 , then $B \cap \mathbb{R}$ is a Borel set in \mathbb{R} .

b) If $E \subset \mathbb{R}^2$ is Lebesque measurable in \mathbb{R}^2 , then $E \cap \mathbb{R}$ is Lebesque measurable in \mathbb{R} .

3. Prove the following statements.

a) If $A, B \subset \mathbb{R}$ are open, then so is $A \times B \subset \mathbb{R}^2$.

b) If $A, B \subset \mathbb{R}$ are closed, then so is $A \times B \subset \mathbb{R}^2$.

c) If $A, B \subset \mathbb{R}$ are G^{δ} , then so is $A \times B \subset \mathbb{R}^2$.

d) If $A, B \subset \mathbb{R}$ are F^{σ} , then so is $A \times B \subset \mathbb{R}^2$.

e) If $A, B \subset \mathbb{R}$ are Borel, then so is $A \times B \subset \mathbb{R}^2$.

(Hint: $A \times B = (A \times \mathbb{R}) \cap (\mathbb{R} \times B)$.)

f) If $A, B \subset \mathbb{R}$ are Lebesgue measurable, then so is $A \times B \subset \mathbb{R}^2$.

(Hint: use the fact that $E \subseteq \mathbb{R}^k$ is Lebesque measurable if and only if there exist an F_{σ} -set E_1 and a G_{δ} -set E_2 such that $E_1 \subseteq E \subseteq E_2$ and $\lambda(E_2 \setminus E_1) = 0$. In one dimension the latter means that $E_2 \setminus E_1$ can be covered by countably many intervals with arbitrary small total length.)

4. For an $\mathbb{R} \to \mathbb{R}$ function f let

$$A_f \stackrel{\text{def}}{=} \{ (x, y) : y < f(x) \} \subset \mathbb{R}^2.$$

- a) Express A_f as the union of countably many sets of the form $E \times (-\infty, t)$.
- b) Prove that f is Borel measurable if and only if $A_f \subset \mathbb{R}^2$ is a Borel set.

5. Let (X, \mathcal{M}) be a measurable space. A finite signed measure on (X, \mathcal{M}) is a mapping $\mu \colon \mathcal{M} \to \mathbb{R}$ such that $\mu(\emptyset) = 0$ and μ is σ -additive, that is,

$$\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \sum_{n=1}^{\infty} \mu(E_n)$$

for any sequence E_1, E_2, \ldots of pairwise disjoint measurable sets.

Given a finite signed measure μ we define $\mu^+, \mu^- \colon \mathcal{M} \to [0, \infty]$ as follows:

$$\mu^+(E) \stackrel{\text{def}}{=} \sup \left\{ \mu(A) : A \subseteq E; A \in \mathcal{M} \right\};$$
$$\mu^-(E) \stackrel{\text{def}}{=} -\inf \left\{ \mu(A) : A \subseteq E; A \in \mathcal{M} \right\}.$$

a) Show that $\mu^- = (-\mu)^+$.

b) Prove that μ^+ and μ^- are measures.

c) Show that $\mu^+(X)$ and $\mu^-(X)$ are finite.

 $(\mu^+ \text{ and } \mu^- \text{ are called the positive part/positive variation and the negative part/negative variation of <math>\mu$, respectively. It can be shown that $\mu = \mu^+ - \mu^-$.)

6.* (extra problem, no points) Let f and A_f be as in Question 4. Prove that f is Lebesque measurable if and only if $A_f \subset \mathbb{R}^2$ is Lebesgue measurable.