Real Functions and Measures, BSM, Fall 2014 Assignment 9

1. Let (X, \mathcal{M}, μ) be a measure space with $\mu(X) < \infty$, and A, B measurable sets.

a) Show that $\lambda(E) \stackrel{\text{def}}{=} \mu(E \cap A) - \mu(E \cap B)$ $(E \in \mathcal{M})$ is a signed measure, and determine its Hahn decomposition.

b) Prove that $\lambda \ll \mu$ and find the Radon-Nikodym derivative $\frac{d\lambda}{d\mu}$.

2. Consider \mathbb{R} equipped with the σ -algebra of Lebesgue measurable sets. Let μ denote the counting measure and λ the Lebesgue measure.

a) Does λ have a Lebesque decomposition w.r.t. μ ? If yes, what is it?

b) Does μ have a Lebesque decomposition w.r.t. λ ? If yes, what is it?

3. Let (X, \mathcal{M}, μ) be a measure space, $f: X \to [0, \infty]$ a measurable function, and ν the measure defined by $\nu(E) = \int_E f d\mu \ (E \in \mathcal{M})$.

a) Describe the functions f for which $\mu \ll \nu$.

b) Determine the Radon-Nikodym derivative $\frac{d\mu}{d\nu}$.

4. Let λ_k denote the k-dimensional Lebesgue measure. Prove that if $A, B \subset \mathbb{R}$ are Lebesgue measurable, then $\lambda_2(A \times B) = \lambda_1(A)\lambda_1(B)$.

(Hint: first prove the statement when A, B are both open, then use outer regularity.)