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1 Notation

Numbers natural numbers: N = {0, 1, 2, 3, . . . }
integers: Z = {. . . ,−2,−1, 0, 1, 2, . . . }
rationals: Q = {p/q : p, q ∈ Z}
real numbers: R, usually associate with a straight line,
Ex.: π, e,

√
2

irrational numbers: R \Q = Q∗
complex numbers: C = {a+ib : a, b ∈ R}, where i (the imaginary number)
is the root of x2 + 1 = 0 so i2 = −1.

Basics Lower integer: bxc, the biggest integer which smaller or equal x
Upper integer: dxe, the smallest integer which bigger or equal x
Factorial: n! = 1 · 2 · · · · · n
Binomial coefficients: (

n

k

)
=

n!

k! · (n− k)!
=

= the number of choice of k elements from an n-element set.∑n
i=1 ai = a1 + a2 + . . .+ an, the sum of ai’s.∏n
i=1 ai = a1 · a2 · . . . · an, the product of ai’s.

2 Method of proof

Exercise 1. (Double counting method)

n∑
i=1

n∑
j=1

(i+ j) =
n2 · (n+ 1)

2
= A

Exercise 2.

I =

n∑
i=1

i∑
j=1

(i+ j) =

n∑
i=1

n∑
j=i

(i+ j) = II

And

I + II = A+

n∑
i=1

(i+ i) = A+ n · (n+ 1)

Thus I = (n+ 1)2 · n/2.

Remark: There are other ways to calculate this (I) expression.

Direct method See Exercise 1 and 2.



Indirect method

Proposition 1.
√

2 is irrational.

Proposition 2. e =
∑∞
i=1

1
n! is irrational.

Induction

Proposition 3. For any n ∈ N

1 + 2 + · · ·+ 2n = 2n+1 − 1.

Behind the proof we found the following mathematical object:

Proposition 4 (Mathematical Induction). Let X be a set of natural num-
bers with the following properties:

(i) The number 1 belongs to X

(ii) If some natural number n is the element of X, the number n + 1
belongs to X, as well.

Usually we use this statement to verify statements A(1), A(2), A(3), . . . ,
where A(i) denotes the ith statement.

Proposition 5 (Well ordering ’axiom’). Any non-empty subset of N pos-
sesses a smallest element.

The smallest element u of a set X ⊂ N means there is no element y ∈ X
such that u < x, with the natural ordering of N.

Proposition 6. The Proposition Mathematical Induction and Proposition
Well ordering are equivalent.

The following proposition is the example of a tricky induction.

Proposition 7 (Arithmetic and geometric inequality). Let a1, a2, . . . , an
be non-negative real numbers for any n ≥ 1. Then

a1 + a2 + · · ·+ an
n

≥ n

√
a1 · a2 · · · · · an

3 Sets

We denote the sets by A,B,C,X, Y, Z, etc. The elements are denoted by
a, b, c, x, y, z, etc. The operation ∈ means belonging to, is the element of
something. Example: x ∈ X, x is belongs to X, x is the element of X. For
a finite set X we denote the cardinality (the number of distinct elements)
by |X|.

Basic operations ∩: X ∩ Y = {x : x ∈ X and y ∈ Y}
∪: X ∪ Y = {x : x ∈ X or y ∈ Y}.
The complement of A in X is Ac = {x ∈ X : x 6∈ A}. We also denote it
by A or X \A.
\: There are two sets A,B in X. A \B = A ∪Bc.



Basic properties: associativity:
(A ∩B) ∩ C = A ∩ (B ∩ C)
(A ∪B) ∪ C = A ∪ (B ∪ C)
commutativity:
A ∩B = B ∩A
A ∪B = B ∪A
distributivity:
A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)
generalization of distributivity:
A ∩ (

⋃∞
i=1Bi) =

⋃∞
i=1(A ∩B)

A ∪ (
⋂∞
i=1Bi) =

⋂∞
i=1(A ∪B)

De-Morgan formulas:
A \ (B ∪ C) = (A \B) ∩ (A \ C)
A \ (B ∩ C) = (A \B) ∪ (A \ C)
generalization of De-Morgan formulas:
A \ (

⋃∞
i=1Bi) =

⋂∞
i=1(A \Bi)

A \ (
⋂∞
i=1Bi) =

⋃∞
i=1(A \Bi)

Proving formulas: Venn-diagram (not precise, but gives good intuition)
Precise proof: separately show that Left side ⊆ Right side and Right side
⊆ Left side.

Ordered pairs: (x, y) = {{x}, {x, y}}
Cartesian product: X × Y = {(x, y) : x ∈ X, y ∈ Y }
Example: R2 is the plain.
n-times Cartesian product ofX: Xn = X ×X × · · · ×X︸ ︷︷ ︸

n

= {(x1, x2, . . . , xn) :

xi ∈ X, 1 ≤ i ≤ n}

4 Functions

Let f : X → Y is a set of ordered pairs such that for every y there exists
at most one x such that f(x) = y. (A function is a subset of X × Y ).

Decomposition: f : X → Y , g : Y → Z then h = g ◦ f : X → Z is the
composition, such that h(x) = z if there exists y such that f(x) = y and
g(y) = z.

Properties Onto: f : X → Y is onto (surjective) if for every y ∈ Y , there exists at
least x ∈ X such that f(x) = y.

One-to-one: f : X → Y is one-to-one (injective) if f(x1) = f(x2) ⇒
x1 = x2.



Bijective: f : X → Y is bijective if for every y there exists one x such
that f(y) = x.

Proposition 8. The function f is bijective if and only if onto and one-
to-one.

Proposition 9. (a) If f : Y → Z, g : X → Y are onto then h = f ◦ g is
also onto.

(b) If f : Y → Z, g : X → Y are one-to-one then h = f ◦ g is also
one-to-one.

(c) If f : Y → Z, g : X → Y are bijective then h = f ◦ g is also bijective.

(d) For every function h : X → Y there exists a set Z and two functions
f, g such that f : Z → Y one-to-one and g : X → Z onto.

Inverse function: Inverse: If f : X → Y is bijection, then the inverse of f can be defined by
f−1 : Y → X such that f−1(y) = x if f(x) = y.
Then f−1 is also a bijection.

For a set X, let idX : X → X denote the function defined by idX(x) = x
for all x ∈ X (the identity function). As an exercise one can show the
following statement.

Proposition 10. Let f : X → Y be some function. Then the following
are true.

(a) A function g : Y → X such that g ◦ f =idX exists if and only if f is
one-to-one.

(b) A function g : Y → X such that f ◦ g =idY exists if and only if f is
onto.

(c) A function g : Y → X such that both g ◦ f =idX and f ◦ g =idY exist
if and only if f is bijection.

(d) If f : X → Y is a bijection, then the following three condition are
equivalent for a function g : Y → X:

(i) g = f−1

(ii) g ◦ f =idX
(iii) f ◦ g =idY .

4.1 Asymptotic Behaviour

Let f, g : N 7→ R, (f, g ≥ 0)

(a) f(n) = O(g(n)) if ∃n0 and C > 0 such that ∀n ≥ n0

f(n) ≤ C · g(n).

(b) f(n) = o(g(n)) if

lim
n→∞

f(n)

g(n)
= 0.



(c) f(n) = Θ(g(n)) if ∃n0 and C1, C2 > 0 such that ∀n ≥ n0

C1 · g(n) ≤ f(n) ≤ C2 · g(n).

So f and g has the same ”speed of increasing”.

(d) f(n) ∼ g(n) if

lim
n→∞

f(n)

g(n)
= 1.

So f and g are asymptotically the same.

Example 11. We will see later that

(a)
∑n
i=1

1
n = Hn ∼ lnx

(b) n! ∼ f(n) =
√

2πn(ne )n

Proposition 12. (a) nα = o(nβ) if α < β.

(b) nc = o(an) if a > 1.

(c) (lnn)c = o(nα) if α > 0

Then there can be defined a partial ordering f < g if f = o(g). So
(lnn)c < nα < an, where α > 0, a > 1.

Proposition 13. (
n

k

)
∼ nk

k!

5 Relations

Every subset R of the Cartesian product X × Y is called relation. we
denote it by xRy or (x, y) ∈ R.
Very important case when X = Y .
Examples: =,≤, < are typical example for a relation.
Composition of relations: R ⊆ X × Y and S ⊆ Y ×Z, then we can define
the composition T = R ◦ S such that for any x ∈ X and z ∈ Z, (x, z) ∈ T
if there exists y ∈ Y such that (x, y) ∈ R and (y, z) ∈ S.

Representations We denote the relation by R ⊂ X × Y . Drawing a rectangle: Briefly, let
|X| = n, |Y | = m. In n ×m grid space we color black if the coordinates
of that square is in the relation.
Matrix representation: n×m matrix represents the relation R if for every
i ∈ X, j ∈ Y , aij = 1 if (i, j) ∈ R, and aij = 0, if (i, j) 6∈ R.
Graph representation: We draw a bipartite graph with the corresponding
relation. If R ⊂ X ×X, then we may draw a graph on n points.

Now deal only with the relations which is the subset of X ×X

Properties Reflexivity: R is reflexive, if (x, x) ∈ R, for every x ∈ X.
Symmetry: R is symmetric if (x, y) ∈ R if and only if (y, x) ∈ R.
Antisymmetry: R is antisymmetric if (x, y) ∈ R then (y, x) 6∈ R and if



(y, x) ∈ R then (x, y) 6∈ R.
Transitivity: R is transitive, if (x, y) ∈ R and (y, x) ∈ R then (x, z) ∈ R.

Inverse relation: The inverse relation of R ⊆ X×Y is R−1 ⊆ Y ×X which
satisfies (y, x) ∈ R−1 if (x, y) ∈ R.

Diagonal relation: ∆X = {(x, x) : x ∈ X}

Equivalence R ⊂ X×X is equivalence on X if R is reflexive, symmetric and transitive.
Examples:

(a) X = N: R =∼
x ∼ y iff x− y is even

(b) Triangles

Equiv. class R[x] = {y ∈ X : xRy} equivalence class of R determined by x.

Proposition 14. For any equivalence R on X, we have

(a) R[x] is nonempty for every x ∈ X.

(b) ∀x, y ∈ X R[x] = R[y] or R[x] ∩R[y] = ∅.
(c) The equivalence class uniquely determine R. (If R and S are equiv.

on X and R[x] = S[x] for every x ∈ X then R = S.)

6 Cardinality of sets

We define an equivalence relation ∼ in the following way: X ∼ Y if and
only if there exists a bijection X → Y .
Notation: |X| = |Y | if and only if X ∼ Y .
The symbol |X| called the cardinality of X.
For finite sets this is the number of the elements.
If the set of X is not finite, then we say that it has infinite cardinality.
Furthermore, we say that |X| ≤ |Y | if there exists an injection X → Y .
Then < is a partial ordering.
Antisymmetry comes form the following theorem:

Theorem 15 (Cantor-Bernstein-Schroeder). If there exists an injection
X → Y and there exists an injection Y → X then there exists a bijection
X → Y (so of |X| ≤ |Y | and |Y | ≤ |X| then |X| = |Y |).

So there are four possibilities: (|X| < |Y |) or (|Y | < |X|) or (|X| = |Y |)
or (X and Y are not comparable.

Axiom of Choice A choice function is a function f, defined on a collection X of nonempty
sets, such that for every set A in X , f(A) is an element of A.
Axiom of choice: For any set X of nonempty sets, there exists a choice
function f defined on X .



Theorem 16. With the axiom of choice it can be proved that X and Y
are comparable.

Thus ≤ is a linear ordering on the equivalence classes of ∼.
Countable sets: A set X is countable if |X| = |N|.

Proposition 17 (Countable sets).

|N| = |Q| = |Q×Q| = |Q× · · · ×Q|︸ ︷︷ ︸
n

= |
n⋃
i=1

Ai|,

where |Ai| = |N| for any i ∈ N.

Theorem 18 (Continuum is not Countable).

|R| > |N| = |Q|,

|2X | > |X|.

The proof based on the diagonal method.
Consequence: There are infinitely many different infinite cardinality ex-
ists.
Continuum hypothesis: There is no other cardinality exists between
|N| and |R| = c.

7 Ordering

The relation R is an ordering if it is reflexive, antisymmetric, transitive.
(X,R) is called ordered set.
Notation: R =≤, a ≤ b
Ordered sets= partially ordered sets= POSETs
Ordering= partial ordering

R is a linear ordering if it is ordering and ∀x, y ∈ R xRy or yRx.
Examples:

(a) Lexicographic ordering is a linear ordering.

(b) Parameters of computers

(c) a|b
(d) X be a set and 2X the power set. The relation is ⊆.

Drawing Posets Do not denote transitivity, arrows and loops. Vertical position.

Hesse diagram Examples:

(a) Linear ordering

(b) Cartesian product



(c) Subset system of an n-element set with inclusion (We drawn it for
n = 2, 3).

Immed. pred.: Let (X,≤) be a poset. We say that x ∈ X is an immediate predecessor of
the element y if

• x < y and

• There is no t ∈ X s.t. x < t < y-

We denote this relation by /.

Proposition 19. Let (X,≤) be a finite ordered set and let / the immediate
relation. Then for any two elements x, y ∈ X,x < y holds iff there are
elements x1, . . . , xk ∈ X s.t x / x1 / . . . / xk / y (if k = 0 then x / y).

Lemma 20. Let x, y ∈ X,x < y be two elements s.t. there exist at
most n elements t ∈ X satisfying x < t < y. Then there are elements
x1, . . . , xk ∈ X s.t x / x1 / . . . / xk / y.

Hesse diagram Examples:

(a) Linear ordering

(b) Cartesian product

(c) Power set, etc.

Linear extension Every linear ordering is an ordering but the reverse is not true. But...

Theorem 21. Let P = (X,�) be a finite poset. Then there exists a linear
ordering ≤ on X s.t x � y implies x ≤ y.

Remark: This might call the linear extension and this exists if X is not
finite ( Equivalent AC).

Let (X,�) be a poset. An element a ∈ X is called minimal of X if @x ∈ X
s.t. x ≺ a. (Similar: maximal)

Theorem 22. Every finite poset has a minimal element.

(Z,≤) has no minimal and maximal elements.

Embedding Let (X,�) and (X ′,�′)be two ordered sets. A mapping f : X → X ′ is
called embedding of (X,�) into (X ′,�′) if the following hold:

(a) f is one-to-one.

(b) f(x) �′ f(y) iff x � y.

If f is onto, then it is an isomorphism between the posets.

Theorem 23. For every finite poset P = (X,�) there exists an embedding
into (2X ,⊆).

Large implies tall or wide Let (X,�) = P be a poset.



Independent sets The set A ⊆ X is called independent if ∀x, y ∈ X,x � y and x � y.
(Antichain)
In this case x and y are incomparable.
α(P ) = max{|A| : A indep. set of P = (X,�)}.

Proposition 24. The set of all minimal (or maximal) elements is an
independent set.

Chain The set B ⊆ X is a chain if ∀x, y ∈ Bx � y or y � x.
ω(P ) = max{|B| : B is a chain in P = (X,�)}.

Theorem 25. For every finite set P = (X,�), we have

α(P ) · ω(P ) ≥ |X|.

Corollary 26 (Erdos-Szekeres Thm.). Arbitrary sequence (x1, . . . , xn2+1)
of real numbers contains a monotone subsequence of length n+ 1.

Sperner’s theorem This theorem states that any independent system of subsets of n-element
set contains at most

(
n
dn/2e

)
sets.

Theorem 27. α(Bn) ≤
(

n
dn/2e

)
LYM inequality This inequality was named by Lubell, Meschalkin and Yamamoto.

Proposition 28. LetM be an independent system of subsets in Bn. Then∑
M∈M

1(
n
|M |
) ≤ 1.

8 Combinatorial counting

Proposition 29 (Variation with repetitions). Let N be an n-element set
(it may be empty, i.e. we admit n = 0, 1, 2, . . . ) and let M be an m-
element set m ≥ 1. Then the number of possible mapping f : N → M is
mn.

Proposition 30 (Variation without repetitions). For given numbers n ≥
m ≥ 0, there exist exactly

n(n− 1) . . . (m− n+ 1) =

m−1∏
i=0

(n− i)

injective mappings of a given m-element set to a given n-element set.

Proposition 31 (Permutation without repetitions). For given n ≥ 0, the
number of bijective functions f : {0, . . . , n} → {0, . . . , n} is n!.

Proposition 32 (Permutation with repetitions). There is k1 number of
1’s, k2 number of 2’s, . . . , and kL number of L’s such that k1+· · ·+ks = n
Then there can be written

n!

k1! . . . kL!

different numbers with these characters.



Proposition 33 (Combination without repetitions). Let n different ob-
jects in a queue. The number of the choice of k object at the same time
from this n is

(
n
k

)
.

Theorem 34 (Binomial theorem).

(x+ y)n =

n∑
i=1

(
n

i

)
xiyn−i.

Theorem 35 (Multinomial theorem).

(x1 + x2 + · · ·+ xm)n =
∑

k1+k2+···+km=n

(
n

k1, k2, . . . , km

)
xk11 x

k2
2 · · ·xkmm ,

(n ≥ 1, k1 + k2 + · · ·+ km = n, ki ≥ 1).

Example 36. How many ways are there to write a non-negative integer
as a sum of r non-negative integers, where the order of the integers counts
(i.e. i1 + · · ·+ ir = m and i1, . . . , ir ≥ 0)?

Pascal triangle

Proposition 37 (Combination with repetitions). Let k different type of
objects but we may choose arbitrarily many from any of them. Then the
number of the choice of n object from them is

(
n+k−1
k−1

)
.

Formulas

Proposition 38. (a) The number of the subsets of an n-element set is
2n, moreover:

2n =

n∑
k=1

(
n

k

)
.

(b) The number of the subsets containing odd number of element is equal
the number of the subsets containing even number of element. i.e.

0 =

n∑
k=1

(−1)k
(
n

k

)
(c) Easy: (

n

k

)
+

(
n

k + 1

)
=

(
n+ 1

k + 1

)
(d) Easier: (

n

k

)
=

(
n

n− k

)
Method of proofs Now we collected the techniques that we usually use to prove a combina-

torial identity of binomial coefficients.

(a) Induction and/or direct calculation.

(b) Find out a combinatorial problem and count the corresponding quan-
tity with double counting.



(c) Use binomial or multinomial theorem or some polynomial expression.

(d) Use Pascal’s triangle.

(e) Use Probability Theory by finding a proper distribution.

1. Vandermonde’s identity(
m+ n

r

)
=

r∑
k=0

(
m

k

)(
n

r − k

)
, m, n, r ∈ N0.

2. generalization of Vandermonde’s identity(
n1 + · · ·+ np

m

)
=

∑
k1+···+kp=m

(
n1
k1

)(
n2
k2

)
· · ·
(
np
kp

)

Example 39.

m∑
k=0

(
n

k

)(
n

m− k

)
=

(
2n

m

)
m∑
k=0

(−1)k
(
n

k

)(
n

m− k

)
= (−1)m/2

(
n

m/2

)
,

otherwise it is 0 for odd m.

3. Connections with this identity
We can prove Vandermonde’s identity using Pascal triangle or with prob-
ability theory using hypergeometric distribution
(For further information, see: https://en.wikipedia.org/wiki/Hypergeometric distribution)

9 Estimations

Reminder We recall some basic definitions and results about the asymptotic be-
haviour of functions:
Let f, g : N 7→ R, (f, g ≥ 0)

(a) f(n) = O(g(n)) if ∃n0 and C > 0 such that ∀n ≥ n0

f(n) ≤ C · g(n).

(b) f(n) = o(g(n)) if

lim
n→∞

f(n)

g(n)
= 0.

(c) f(n) = Θ(g(n)) if ∃n0 and C1, C2 > 0 such that ∀n ≥ n0

C1 · g(n) ≤ f(n) ≤ C2 · g(n).

So f and g has the same ”speed of increasing”.



(d) f(n) ∼ g(n) if

lim
n→∞

f(n)

g(n)
= 1.

So f and g are asymptotically the same.

Proposition 40. (a) nα = o(nβ) if α < β.

(b) nc = o(an) if a > 1.

(c) (lnn)c = o(nα) if α > 0

Then there can be defined a partial ordering f < g if f = o(g). So
(lnn)c < nα < an, where α > 0, a > 1.

Question 41. (a) What is the asymptotic behaviour of
(
n
k

)
when n →

∞?

(b) Let

An =
1

n
+ · · ·+ 1

2n
.

What is the asymptotic behaviour of A(n)?

(c) What is the asymptotic behaviour of n! when n→∞?

(d) What is
∑n
k=1 k

3 asymptotically?

(e) a(R) denote the number of the lattice points (x, y) of a grid which
satisfy x2 + y2 ≤ R2. What is a(R) asymptotically?

Binomial coeff.

Proposition 42 (Easy). (n
k

)k
≤
(
n

k

)
≤ nk,

2n

n+ 1
≤
(

n

bn/2c

)
≤ 2n.

Proposition 43. (
n

k

)
≤

k∑
i=1

(
n

i

)
≤
(en
k

)k
In the depth of the previous proof we can find the Generating Function
method.

Proposition 44.
22m

2
√
m
≤
(

2m

m

)
≤ 22m√

2m
.

More precisely,
(
2m
m

)
∼ 22m√

πm
, by Stirling formula.

Harmonic series

Hn = 1 +
1

2
+ · · ·+ 1

n



Proposition 45.

1

2
blog2(n)c+ 1 ≤ Hn ≤ blog2(n)c+ 1.

Proposition 46. An bounded and converge.

Integral method

Theorem 47. If f ≥ 0 is monotone increasing function, then

N−1∑
i=1

f(i) ≤
∫ N

1

f(x)dx ≤
N∑
i=2

f(i).

If f ≥ 0 is monotone decreasing function, then

N−1∑
i=1

f(i) ≥
∫ N

1

f(x)dx ≥
N∑
i=2

f(i).

(Think on that what happen if f ≤ 0.)

Proposition 48. For f(x) = 1/x, we get Hn

lnn → 1 whenever n→∞ (i.e:
Hn ∼ lnx).

Proposition 49.
An → ln 2,

whenever n→∞.

Factorial function Using the Integral Method we showed the following estimation:

Proposition 50. For f(x) = lnx we get

e
(n
e

)N
≤ N ! ≤ Ne

(n
e

)N
.

Stirling’s formula The precious asymptotic can be given by the Stirling formula:

Theorem 51. Let f(n) =
√

2πn(ne )n, then f(n)
n! → 1 whenever n → ∞

(i.e. n! ∼
√

2πn(ne )n).

(Not prove)

Sum of powers We proved using integral method:

Proposition 52.
n∑
i=1

ik ∼ nk+1

k + 1
.

(Further details see: https://en.wikipedia.org/wiki/Faulhaber%27s formula)

4. Another type of asymptotic question: By a geometric construction we
showed:

Proposition 53.
a(R) ∼ R2π.



10 Inclusion-exclusion principle

Example 54. How many numbers are not divisible by 2, 3, 5 up to 100?
The answer given by the formula:

|A∪B ∪C| = |A|+ |B|+ |C|− (|A∩B|+ |A∩C|+ |B ∩C|) + |A∩B ∩C|,

where |A|, |B|, |C| are sets.

Generally, it is given a collection of N objects. Each object has one or
more properties. We label them by a1, . . . , ar.

N(ai) is the number of objects having property ai.
N(aiaj) is the number of objects having properties ai and ai.
N0 the number of objects which has no property.

Theorem 55.

N0 = N −
∑
i

N(ai) +
∑
i<j

N(ai, aj)− · · ·+ (−1)rN(a1 . . . ar) (1)

Euler function: φ(n) is the number of positive integers less, than n that are relatively
prime to n.

Proposition 56. If n = pα1
1 · · · p

αk

k , then

φn = n−
∑
i

n

pi
+ · · ·+ (−1)r

n

p1 · · · pk
= n

k∏
i=1

(
1− 1

pi

)
.

fixed point free Let π be a permutation of the the set {1, 2, . . . , n} We say that π is fixed
point free if there is no number 1 ≥ k ≥ n such that π(k) = k.

Proposition 57. The number of the fixed point free permutations is

n!(1−
(
n

1

)
(n− 1)! +

(
n

2

)
(n− 2)!− · · ·+(−1)n−1) =

n!(1− 1 +
1

2!
− 1

3!
+ . . . )

n→∞−−−−→ n!

e

This situation arises in many questions, for instance in the following ex-
ercise.

Example 58. There are 5 people in a party. Everybody has a hat, which
they took off next to the entrance. After some beer they go home, but
that time they do not really care which hat they put on. What is the
probability that no one has his own hat?



11 Generating function

11.1 Power series

Let (an) be a sequence of real numbers. We say that the form
∑∞
n=1 anx

n

is a power series.
It may converge, may not.

Example 59. (a) Finite power series are polynomials

(b)
1 + x+ x2 + · · ·+ xn + . . .

(c)

1 + x+
x2

2
+
x3

3!
+ · · ·+ xn

n!
+ . . .

Generally,

f(x) =

∞∑
i=0

anx
n (Maclaurin series)

f(x) =

∞∑
i=0

an(x− c)n (Taylor series)

f(x) is converge for x = c (x = 0 i the first case).
If f(x) is converge in any small neighbourhood of c, then there exists an
r ∈ (0,∞] such that the series converge whenever |x− c| < r and diverge
if |x− c| > r. This r is called the convergence radius of f in c.

C-H thm. The radius r can be given by (an).

Theorem 60 (Cauchy-Hadamard theorem).

r = lim inf
n→∞

1
n
√
|an|

Most of our cases the limit exists, then r = limn→∞
1

n
√
|an|

.(Examples

again.)
We do not know only from this theorem what happens on the boundary
|x− c| = r (Further analysis needed).
(Absolute convergence, uniform convergence)

Operation Let us assume that f(x) =
∑∞
n=1 an(x− c)n and g(x) =

∑∞
n=1 bn(x− c)n

(a) Then

f(x)± g(x) =

∞∑
n=1

(an ± bn)(x− c)n.



(b)

f(x)·g(x) = (

∞∑
n=1

an(x−c)n)(

∞∑
n=1

bn(x−c)n) =

∞∑
n=1

(

n∑
i=0

ai·bn−i)(x−c)n.

(c) f is differentiable, f ′ has the same radius r and

f ′(x) =

∞∑
n=1

nan(x− c)n−1 =

∞∑
n=0

an+1(n+ 1)(x− c)n.

(d) f is integrable,
∫
f(x)dx has the same radius r and∫

f(x)dx =

∞∑
n=0

an(x− c)n+1

n+ 1
+ C =

∞∑
n=1

an−1(x− c)n

n
+ C.

Taylor-series Now we start with function f and we would like to find out the coefficient
an such that

f(x) =
∞∑
n=0

an(x− c)n

Theorem 61. If f is the differentiable (around c) infinitely many times,
then

f(x) =

n∑
n=1

f (n)(c)

n!
(x− c)n.

So an = f(n)(c)
n! .

And if r > 0 then f(x) = its Taylor series in |x− c| < r.

Remark 62. (a) Polynomials

(b) Good approximation

Examples again.

Theorem 63 (Generalized binomial theorem).

(1 + x)α =

∞∑
n=0

(
α

n

)
xn (∀|x| < 1, α ∈ R,

where
(
α
n

)
= α(α−1)...(α−n+1)

n!

Examples: (1 + x)1/2, (1 + x)3.

Let (a0, a1, a2, . . . ) be a sequence of real numbers. If an is not growing
’too fast’, then a(x) = a0 + a1x+ a2x

2 + . . . is a well defined function in
the neighborhood of 0.

Proposition 64. Let (a0, a1, a2, . . . ) be a sequence of reals, and let us
assume that for some real numbers K, we have |an| ≤ Kn ∀an ≥ 1. Then
for every x ∈ (− 1

K ,
1
K ), a(x) =

∑∞
i=0 aix

i converges (even absolutely).
Moreover: The values of the function a(x) on any small neighborhood of
0 determine the whole sequence (a0, a1, a2, . . . ). (Uniqueness)

We call this a(x) the generating function (gen. function) of (an).



Operations Let a(x) and b(x) be the generating functions of (a0, a1, a2, . . . ) and (b0, b1, b2, . . . ),
respectively

(a) Summation:
a(x) + b(x) be the gen. function of (a0 + b0, a1 + b1, a2 + b2, . . . ).

(b) Multiplication with fixed reals:
For any α 6= 0 α · a(x) is the gen. function of (αa0, αa1, αa2, . . . ).

(c) Shift to the right:
For any natural number n, xna(x) is the gen. function of (0, . . . , 0︸ ︷︷ ︸

n

, a0, a1, . . . )

(d) Shift to the left:
For the sequence (an, an+1, . . . ) the gen. function is

a(x)− (a0 + · · ·+ an−1x
n−1)

xn
.

(e) Substitution 1.:
We can put αx instead of x:
c(x) = a(αx) is the gen. function of (a0, αa1, α

2a2, . . . ). (examples)

(f) Substitution 2.:
We can put xn instead of x:
The n · kth term equal the original sequence kth term.
So d(x) = a(xn) is the gen. function of

(a0, 0, . . . , 0︸ ︷︷ ︸
n−1

, a1, 0, . . . , 0︸ ︷︷ ︸
n−1

, a2, . . . ).

(examples)

(g) Differentiation and integration:
a′(x) is the gen. function of (a1, 2a2, 3a3, . . . ) and∫ x
0
a(t)dt is the gen. function of (0, a0,

1
2a1,

1
3a2, . . . ) (examples)

(h) Product:
a(x)b(x) = c(x) is the gen. function of (c0, c1, c2, . . . ), where

ck =
∑

i,j≥0,i+j=k

aibj .

11.2 Application

List of application:

(a) There are 30 red, 40 blue, 50 white balls, the same colors are distin-
guishable. How many ways are there of selection of 70 balls?

(b) Fibonacci numbers, golden ratio, Linear recursion;

(c) Catalan numbers;

(d) Probability theory:
Example: Average value of a non-negative, integer valued distribu-
tion.

(e) Integer partitions



11.3 Linear recursion, Fibonacci numbers

We calculate the generating function and separate it with partial rational
functions. Calculate the coefficients.
OR
Calculate the characteristic polynomial coming from the recursion and
count the roots of it.
Example: an = Aan−1 + Ban−2 and a0 and a1 are given real numbers
(A,B are also reals). Both method gives us to calculate the roots of the
following polynomial:

x2 −Ax−B = 0.

(a) If the roots λ1, λ2 are different and reals, then easily the solution is
the linear combination of the roots: an = c1λ

n
1 +c2λ

n
2 for some c1, c2.

Using substitution n = 0 and 1 and the fact that a0, a1 is given we
can calculate c1, c2.

(b) If some roots are the same, say λ = λ1 = λ2, then the member of
the recursion (an) can be given as a linear combination of the form:
an = c1 · λn + c2 · n · λn. Using the same argument as in (a) we can
calculate c1, c2.

(c)* If the roots are complex then the roots are conjugates, λ1 = λ2. Then
the roots can be written in the trigonometric form:

λ1 = r(cos(φ) + i · sin(φ)), λ2 = r(cos(φ)− i · sin(φ)),

and

λn1 = rn(cos(n · φ) + i · sin(n · φ)), λn2 = rn(cos(n · φ)− i · sin(n · φ)).

The equation an = c1λ
n
1 + c2λ

n
2 gives a solution for the recursion and

we can calculate c1, c2 by substituting for n = 1, 2, again. (Generally,
c1 and c2 are also complex numbers.)

11.4 Catalan numbers

(Algebraic generator function method):

cn =

n−1∑
i=0

c0 · cn−1 + c1 · cn−2 + . . . cn−1 · c0,

and c0 = 1, c1 = 1.
The generating function is

C(x) = c0 + c1x+ · · ·+ cnx
n + . . . .

It satisfies the following equation (check that):

xC2(x) + C(x) + c0 = 0.



Thus

C(x) =
1±
√

1− 4x

2x
,

this converge if |x| < 1/4 and ± must be − since every ci > 0, so for
small x the function C(x) is converging and monotone increasing. By the
general binomial theorem:

(1− 4x)
1
2 =

∞∑
n=0

(
1/2

n

)
(−4x)n.

(
1/2

n

)
=

(1/2)(−1/2)(−3/2) . . . (−(2n− 3)/2)

n!
=

1

2n
(−1)n−1

1 · 3 · . . . (2n− 3)

n!
=

(−1)n−1
(
1 · 3 · . . . (2n− 3)

)(
2 · 4 · . . . (2n− 2)

)(
2n · n!

)(
2n−1 · (n− 1)!

) =
(−1)n−1

22n−1

(
2(n− 1)

n− 1

)
1

n
.

Thus

(1−4x)
1
2 =

∞∑
n=0

(
1/2

n

)
(−4x)n = 1+

∞∑
n=1

(−1)n−1

22n−1

(
2(n− 1)

n− 1

)
1

n
4n(−1)nxn = 1−

∞∑
n=1

2

n

(
2(n− 1)

n− 1

)
xn.

We get

C(x) =
1− (1−

∑∞
n=1

2
n

(
2(n−1)
n−1

)
xn)

2x
=

∞∑
n=1

1

n

(
2(n− 1)

n− 1

)
xn−1 =

∞∑
n=0

1

n+ 1

(
2n

n

)
xn.

By the uniqueness of the generating function cn = 1
n+1

(
2n
n

)
.

11.5 Probability theory

Let (p0, p1, . . . ) be a distribution on N (
∑∞
i=0 pi = 0). We denote

G(x) = p0 + p1x+ p2x
2 + ·

the generating function of the distribution.

Proposition 65. For every distribution (p1, p2, . . . ) and X be realization
of a choice according to the distribution. Then

G′(1) = E(X) =

∞∑
i=1

i · pi.

Example 66. If we role with two dice. The average of the sum of the
dices is 7.
The average time to get 1 as a result of a role with one dice is 6.



11.5.1 Making dice*

Can we write non-negative integers on the sides of two dices such that
the probability of the sum of them is the same as the sum of two ’normal
dices’? (The dices could be fake.):
We role any number with probability 1/6 in a normal dice. So we can say
that it has a generating function:

g(x) = 1/6x+ · · ·+ 1/6x6.

If we role with two dices:

g(x)2 = (1/6(x+ · · ·+ x6))2

It is not hard to see that it is equal:

(1/6)2x2(x+ 1)2(x2 − x+ 1)2(x2 + x+ 1)2).

Now we would like to make the two dice with at most 6 sides and in ev-
ery side can be written a nonnegative integer number. In our language
we need to separate these factors into two parts such that the product of
each part has at most 6 nonnegative integer coefficients.

After some calculation we can find that it can happen only if

(x+ 1)2(x2 − x+ 1)2 = x6 + 2x3 + 1,

x2(x2 + x+ 1)2 = x6 + 2x5 + 3x4 + 2x3 + x2.

How can we get dices from this result?

11.6 Integer partitions*

The main idea about integer partitions is the following. Find a ’nice’
bijection on the class of the partitions and you get an identity for integer
partitions. Now we present some methods for finding this type of results:

Merging process: If there are two sets with the same size in an integer partition then we
substitute them with one set of double size.

Splitting process: If there is an even set in an integer partition the split them into two equal
part. For instance the following statement can be proved by the use of
splitting-merging process.

Proposition 67. (Euler’s identity) Every number has as many integer
partitions into odd parts as into distinct parts parts.

If we fits the process for Fibonacci numbers for instance: Merge two con-
secutive one, split a Fibonacci number by two smaller one.

Proposition 68. Every number can be written uniquely as a sum of
some non-consecutive Fibonacci numbers.

Ferrer’s diagram In the next link you can find what was mentioned mainly on the class.
https : //en.wikipedia.org/wiki/Partition (number theory)
Here also you can see more the an example for the use of generating
function method.



12 Impartial game theory

This lecture have been sent in an independent file.


