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Abstract

In this paper we investigate the Fuglede’s conjecture for Zp2q2r and provide a proof of it under the
condition p2q2 ď r. We develop a new technique by studying the divisibility of the mask polynomial of
a given set by some system of cyclotomic polynomials. This combined with a so-called mod-p-method
gives a strong tool to study Fuglede’s conjecture in this and some other cases.

1 Introduction

Fuglede conjectured that spectral sets coincide with tiles. The conjecture was originally investigated for the
Euclidean space but it can be formulated for any locally compact group. Let G be a locally compact group
endowed with the Haar measure µ. Let S be a subset of G and denote by L2pSq the Hilbert space of complex
valued square-integrable functions defined on S.

A set S Ď G with 0 ă µpSq ă 8 is called spectral if L2pSq is spanned by the restrictions of exponential
functions that are pairwise orthogonal. A set S is a tile if it has a complement T such that for µ-almost
every element of G can uniquely be written as s ` t, where s P S and t P T . In this case, T is called the
tiling complement of S. Fuglede [9] proved that for a tile on Rn if the tiling complement is a lattice, then it
is spectral and if the spectrum of a spectral set is a lattice, then it is spectral. A group G is called Fuglede
group if both directions of Fuglede’s conjecture hold on G.

Fuglede’s conjecture was disproved by Tao [26] who defined the spectral and tiling properties for finite
abelian groups. Using the existence of a Hadamard matrix of size 12 and a complex Hadamard matrix
of size 6, Tao constructed spectral sets in Z12

2 and Z6
3 which do not tile the group, and lifted the latter

counterexample to the 5 dimensional Euclidean space. The conjecture was also proved false for dimensions
4 and 3, see [6, 14]. Currently, both directions of the conjecture are open in the 1 and 2 dimensional cases
and they fail in higher dimensions.

Dutkay and Lai [3] further developed the connection between the continuous and discrete cases by showing
that the tiling-spectral direction of the conjecture holds on R if and only if it holds on Z and if and only if
it holds on every finite cyclic groups. They also showed (but this is basically the general technology used
by Tao and all other people providing counterexamples in this field) that any counterexample in the finite
cyclic case for the spectral-tile direction would lead to a counterexample for R. On the other hand, Fuglede’s
conjecture is wide open on R2. The equivalence shown by Dutkay and Lai in the one dimensional case is
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not even known on R2. However a counterexample for any direction of the conjecture on Zm ˆ Zn, for
cyclic groups of order n,m P N would provide a counterexample for that direction on R2. Here just some
partial positive results are known. Fuglede’s conjecture holds on Zp ˆ Zpn [28], Zpq ˆ Zpq [4] and on all of
their subgroups, see [10, 13, 22], and the references therein. For the sake of completeness we mention that
although the conjecture is known to be false in higher dimensions, it is an active research area to find finite
Abelian Fuglede groups. The question is particularly interesting on the direct product of p-groups. Apart
from the previously mentioned results that the conjecture holds for Zp and pZpq2 [10], it does not hold for
pZpqn where 4 ď n P N and p ‰ 2 [21, 8], holds for pZpq3 if p “ 5 and p “ 7 [1, 5], and open for pZpq3 in
general. For p “ 2 it is known [8, 7] that the conjecture on pZ2qn holds if n ě 10, does not hold if n ď 6,
and open if 7 ď n ď 9. The direct product of p-groups are particularly interesting because of the conjecture
of R. Shi [22], which states that the tiling-spectral direction holds for Zpl1 ˆ ¨ ¨ ¨ ˆ Zpli ˆ ¨ ¨ ¨ ˆ Zpln , where
n, li P N for 1 ď i ď n.

In this paper we develop the research on finite cyclic groups seeing as the one dimensional case. Here we
just summerize the best available results although many other works precede them. Note that if a group is
Fuglede, then its subgroups, as well. In the sequel n,m P N, p, q, r, s are arbitrary distinct primes.

It is well-known that Zpn is a Fuglede group. It was proved by Malikiosis [20] that the spectral-tile
direction holds for Zpnqm if n,m P N and m ď 6, hence combining it with the results of Coven and Meyerowitz
[2] (see above) these groups are Fuglede groups. Quite recently, Zhang [27] presented that Zpnqr are Fuglede
groups. For squarefree order N , the best known result is that Zpqrs is Fuglede for all choice of p, q, r, s by
Kiss, Malikiosis, Somlai and Vizer [11].

In certain groups, we have knowledge that tiles are spectral. Every tile is spectral on the groups Zpnqk

and ZN , for squarefree N proved by Meyerowitz and  Laba1 and independently by Shi [2, 23].  Laba and
Londner [15, 16, 17] demonstrated a series of more general results, confirming that the tile-spectral direction
of Fuglede’s conjecture holds true for Zp2q2r2 , where p, q, and r are three distinct primes.

The purpose of this paper is to push the spectral-tile direction of the conjecture a bit closer to the one
that is considered by  Laba and Londner [15, 16, 17] for the reverse direction. On the other hand we introduce
further techniques that might help understanding a few general cases which are mentioned above.

In order to keep the paper quite a bit shorter we introduce some arithmetic properties on the primes so
we assume that one of them is much larger than the others. This helps us to introduce one of techniques
that relies on a result of  Laba and Marshall [18].

The main result of this paper follows.

Theorem 1.1. Let p, q, and r be distinct prime numbers. Then every spectral set of the cyclic group Zp2q2r

is a tile, provided that p2q2 ă r. Thus Zp2q2r is a Fuglede group for all distinct primes p, q, r with p2q2 ă r.

Our paper is organized as follows. In Section 2 we introduce the most relevant notation, tools and
theoretic background. Section 3 is devoted to the proof of Theorem 1.1. This section consists of three
parts. First, we handle sets of large cardinality (compared to p2q2r, the order of the group). Secondly,
we apply the previously mentioned technique working under the condition r ą p2q2, which leads to the
assumption of r | |S| and basically simplifies the rest of proof. Thirdly, we develop a new method of proof
based on divisibility of a system of cyclotomic polynomials (see Table 1) and combine it with the so-called
mod-p-method.

2 Notation and preliminaries

Let S be a subset of a cyclic group Zn. The mask polynomial of S on a cyclic group is defined as mSpxq “
ř

sPS xs, where this polynomial is considered as an element of the quotient ring Zrxs{pxn ´ 1q.
The spectral property of a set is expressed by usually a large amount of Fourier roots. Notice that in

the case of a finite abelian group G, the dual group Ĝ is isomorphic to G, so we will just identify them. We
say that a set S in G is spectral if there is a set of representations Λ Ă Ĝ such that the restriction of the
elements of Λ to S form an orthogonal basis of L2pGq. This in turn implies that |S| “ |Λ| so in this case we
say that pS,Λq is a spectral pair. Further using the identification of G and Ĝ, one can observe pΛ, Sq is also
a spectral pair.

1see comments on Tao’s blog
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A representation being a Fourier root of the characteristic function of a set S can be expressed in terms
of the mask polynomial of S. If a representation of order m | n is a root of 1̂s, then it is equivalent to the
fact that the cyclotomic polynomial Φm divides mS . Notice that Φpk | mS implies p | |S| for every prime p
and k ą 0.

Another important observation is that each irreducible representation can be factorized in the following
way. Let ϕ be a homomorphism from an abelian group G to C˚. Then there is a cyclic group Zm such
that ϕ “ χ ˝ π, where π is a surjective homomorphism from G to Zm and χ is a faithful representation of
Zm. In the case of G “ Zn (and m | n) there is a unique subgroup of G of order n

m , which is isomorphic to
Z n

m
. Thus there is a natural homomorphism, the quotient map π : Zn Ñ Zm – Zn{Z n

m
, which we call the

projection.
The following two lemmas provide some inductive tools that were proved in [11].

Lemma 2.1. Suppose that pS,Λq is a spectral pair. Then the following hold true.

1. Without loss of generality we assume that 0 P S and 0 P Λ.

2. If S is contained in a subgroup of G, then S is a tile by induction.

3. If Λ is contained in a subgroup of G, then S is a tile by induction.

Lemma 2.2. Suppose that p | |G| and S is the union of Zp cosets. Then S tiles G.

Another technique relies on the fact that cyclotomic polynomials over a certain finite field simplify which
we express in the following lemma. This is formulated in the polynomial ring Zrxs but the statements clearly
hold in Zrxs{pxn ´ 1q as well.

Now we recall and prove some statements on what we call the mod-p-method.

Lemma 2.3. 1. If p is a prime and m P N such that p ∤ m, then

Φmppxq “ Φmpxpq{Φmpxq. (1)

2. If n “ pkm with prime p and p ∤ m , then

Φnpxq “ Φpmpxpk´1

q. (2)

3. If n “ pkm where p is a prime and p ∤ m, then

Φn | mS in Zrxs ùñ Φm | mS in Zprxs.

Proof. 1- 2. Well-known identities of cyclomatic polynomials.

3. First we assume n “ pm and p ∤ m. From equation (1), we get that

Φpmpxq “ Φmpxpq{Φmpxq “ Φmpxqp{Φmpxq “ Φmpxqp´1 in Zprxs.

This implies that
Φpmpxq | mSpxq ùñ Φmpxq | mS in Zprxs.

If n “ pkm, where k ě 2, then we apply equation (2) and we get that

Φnpxq “ Φpmpxpk´1

q “ Φpmpxq in Zprxs,

hence
Φpkmpxq | mSpxq ùñ Φpmpxq | mS in Zprxs.

This leads to what we have seen earlear, and thus we get the statement that

Φn | mS in Zrxs ùñ Φm | mS in Zprxs.
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The following consequence of Lemma 2.3 is what we call mod-p-method.

Lemma 2.4. Let n “ pkm, where p is a prime and p ∤ m, and S is a subset of Zn. Then the following
implication holds. If

Φd | mS in Zprxs @d | m, (3)

then |S| “ km ` lp for nonnegative k, l P Z.

Proof. Let S̄ be the projection of S to Zm. Note that S̄ is a multiset. Clearly, the analogue of (3) hold for
S̄, i.e., Φd | mS̄ in Zprxs for all d | m. This implies that S̄ ” k ¨ Zm pmod pq, where the equation holds
pmod pq at every point of Zm. The choice of k is not unique but if we choose k to be minimal nonnegative
integer, then we obtain |S| “ |S̄| “ km ` lp, for some nonnegative k, l P Z.

The following is an easy observation that appears in most of the papers written about Fuglede’s conjecture
for finite abelian groups having finitely many prime different divisors, such as [12, 19].

Lemma 2.5. Assume p and q are prime divisors of the order of a cyclic group Zn. Assume 0 P S and that S
is not contained in any proper subgroup of Zn. Then there are s1, s2 P S such that p ∤ s1 ´ s2 and q ∤ s1 ´ s2.

Proof. Since S is not contained in any proper subgroup, then there is s1 P S with p ∤ s1. If q ∤ s1, then
s2 “ 0 satisfies the conditions so we may assume q | s1. Using a similar argument, there is s2 P S with q ∤ s2
and p | s2. Then indeed p ∤ s1 ´ s2 and q ∤ s1 ´ s2.

Using the same argument as above, the following lemma was obtained in [11], Lemma 3.6.

Corollary 2.6. Let pS,Λq be a spectral pair in Zn. Assume p and q are different prime divisors of n and
pk | n and ql | n while pk`1 ∤ n and ql`1 ∤ n. Then Φpkqlm | mS and Φpkqlm1 | mΛ for some m,m1 | n

pkql
or S

is a tile.

One of the key tools in the investigation of Fuglede’s conjecture is the so-called cube rule. This and
following concepts have been introduced in [12]. Let n be a positive integer and m its square-free radical,
i.e. m is the product of the different prime divisors of n. Let Pn denote the set of prime divisors of n. Let
χ be a faithful representation of Zn and S : Zn Ñ N be a (multi)set on Zn If χ is the root of the Fourier

transform yp1Sq of the weighted characteristic function 1S of S, then Φn | mS . By [12, Proposition 3.2.] this
implies that S is the integer coefficient sum of Zpi cosets, where pi P Pn are the different prime divisors of
n. As a consequence we obtain (see [12, Proposition 3.5.]) that if C “

À

Ai, where Ai Ă Zpi of cardinality
2, then the alternating sum on the vertices of C of the weights of S is zero. The sign of each weight is given
by the parity of the Hamming distance from a given point. Such a set C is called a cube with respect to the
cyclic group Zn, although C is a product of subsets of Zpi

.
Generally, the following are equivalent and hold, if Φm | mS for some m | n, where n is square free, see

[12] and [25]. Let S̄ be the projection of S to
À

Zpi , where pi P Pm.

1. The multiset S̄ is the integer coefficient sum of Zpi cosets, where pi P Pm.

2. For every cube C “
ś

Ci Ă
À

Zpi (pi P Pm) and c0 P C the following holds
ÿ

cPC

p´1qdHpc0,cqSpcq “ 0, (4)

where Spcq denotes the weight of c in S, and dH denotes the Hamming distance and ωpmq denotes the
number of distinct prime factors of m.

3 Proof of the main theorem

In order to prove Fuglede’s conjecture for Zp2q2r, where r ą p2q2 it is enough to prove the spectral to tile
direction of Fuglede’s conjecture for G “ Zp2q2r since  Laba and Londner [15, 17] proved the reverse.

Let S be a spectral set. We will do some kind of a case by case analysis but we will try to limit the
number of different cases we have to consider.

We distinguish cases according to the largest divisor of p2q2r that divides the size of S, so we introduce
the following notation.

d || |S| ðñ gcdp|G|, |S|q “ d.
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3.1 Large sets

• p2q2r || |S|. Then S “ G and we are done.

• p2qr || |S| or pq2r || |S|. We will only prove it when p2qr || |S| since the role of p and q is symmetric.

If there are q` 1 points in the same Zq2 coset, then by pigeonhole principle Φq | mΛ and Φ2
q | mΛ hold,

which implies that q2 | |S|, a contradiction. In particular we see that p2qr || S implies that Φq ∤ mΛ or
Φ2

q ∤ mΛ. Further we can also see that each Zq2 coset contains q elements of both S and Λ.

By duality, pΛ, Sq is a spectral pair. Hence from Φq ∤ mΛ we would get that each Zq coset contains at
most one point of S. By cardinality reasons this implies that each Zq coset contains exactly 1 point of
S and hence S is a tile.

If Φ2
q ∤ mΛ, then the intersection of each Zq2 coset with S is contained in one Zq coset. Then again,

since |S| “ p2qr we have that each Zq2 coset contains exactly one Zq coset which is contained in S.
Then S is clearly a tile.

• p2r || |S| or p2q2 || |S| or q2r || |S| or |S| ą minpp2r,p2q2,q2rq. The same type of argument can be
adapted to each case so we will only handle one of them. Let p2r || |S| so that |S| “ kp2r. We show
that k “ 1, and S is a tile.

Take the projection S̄ of S on Zp2r. As q ∤ |S| we have Φq ∤ mΛ and Φ2
q ∤ mΛ. Therefore each Zq2 coset

contains at most 1 point of S. In other words, the projection S̄ Ă Zp2r is a set. Hence |S| ď p2r. By
assumption p2r || |S| we have |S| “ p2r. Then S̄ covers Zp2r once, whence S itself is a tile.

Remark 1. Note that a similar argument can be applied to show that if S is a spectral set such that
|G| “ pk gcdp|G|, |S|q for some prime p and k P N, then S is a tile. It is proved in the Appendix, see
Proposition 4.2.

3.2 Applying arithmetic conditions

The purpose of this subsection is to introduce a technique that is useful when one of the prime divisors of
|G| is very large. This dramatically reduces the number of cases we need to investigate.

We learned the following idea from Ruxi Shi during the Fourier bases 2018 meeting in Crete2.

Lemma 3.1. Let u be a prime divisor of n and let S be a spectral set in Zn. Assume that for every divisor
d ă n of n the spectral-tile direction of Fuglede’s conjecture holds for Zd. Suppose further that u ∤ |S| and
Φmu | mS implies Φm | mS whenever m P N is coprime to u. Then S is a tile.

Proof. It follows from u ∤ |S| that the uS is a set that is contained Zn
u

. In this case if pS,Λq is a spectral
pair, then under the assumption on the mask polynomial we obtain that puS,Λq is a spectral pair. Further
uS is contained in a proper subgroup of Zn. Hence by Lemma 2.1 uS has a tiling partner T in Zn

u
. Then

T
À

Zu is a tiling partner of S in Zn.

From now on we assume that p2q2 ď r. Suppose that the condition of Lemma 3.1 does not hold for
prime r. Otherwise S is a tile and we are done.

Most of the following statement was originally proved by  Laba and Marshall [18]. We consider is super
useful to reduce the cases we need to separately handle so we provide a self-contained but compact proof for
a slightly stronger statement. We prove the following theorem.

Lemma 3.2. Assume r is a prime divisor of the order of the cyclic group Zn and assume there is m | n such
that gcdpm, rq “ 1 and Φmr | mS but Φm ∤ mS . Then |S| ě r. Moreover, each Zn

r
coset contains at least

one point of S.

Proof. For a divisor k of n, let S̄k denote the projection of S to Zk. Our conditions mean that the cube-rule
holds for S̄mr, but does not hold for all cube for S̄m.

Notice that the Zm cosets in Zmr can be identified with Zm so we may say that the cube rule holds in a
Zm coset for a multiset defined on Zmr. Using this terminology we obtain that since the cube-rule holds for

2http://fourier.math.uoc.gr/fb18/
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all cube in S̄mr, we have either that the cube-rule holds for the S̄mr in each Zm coset or it fails for S̄mr in
each Zm coset. In our case it has to fail for each Zm coset since Φm ∤ mS . Hence each Zm coset contains at
least one point of S̄mr, hence |S̄mr| “ |S| ě r, otherwise the intersection with S is empty for some Zm coset,
when the cube-rule holds.

Indeed, if there is a Zm coset in Zmr which does not contain elements of S, then the cube-rule holds for
S̄mr in that coset, which we have already excluded.

Lemma 3.3. Assume that the assumptions of Theorem 1.1 hold, i.e., S Ă Zp2q2r is spectral and p, q, r are
distinct primes with p2q2 ă r. Then Φr | mS .

Proof. By Lemma 3.2, we have already seen that |S| ě r (otherwise S is automatically a tile), and since
p2q2 ă r, it follows that there are at least two points in the same Zr coset. Since S is spectral, this leads to
the conclusion that Φr | Λ, and consequently r | |Λ| “ |S|.

From now on we assume Φr | mS.

Remark 2. The fact that |S| ě r was also proved by  Laba and Marshall. The novelty here is that the
conditions of Lemma 3.2 implies that the projection of S to Zr is surjective.

As in the whole argument we can change the role of S and Λ. We get the following corollary.

Corollary 3.4. Let p2q2 ď r and pS,Λq be a spectral pair. Then we have one of the following alternatives.

1. S (resp. Λ) is a tile.

2. There are m1 | |G| (m2 | |G|) such that gcdpm1, rq “ gcdpm2, rq “ 1 and Φm1r | mS (Φm2r | mΛ) but
Φm1

∤ mS , (Φm2
∤ mΛ). We then have by Lemma 3.3 that Φr | mS and Φr | mΛ and hence r | |S| “ |Λ|.

3.3 Remaining cases

As a consequence we get that it remains to prove the statement for the following subcases r || |S|, pr || |S|,
qr || |S|, and pqr || |S|, and we may assume Φr | mS . For the sake of completeness we list at first those cases
that are excluded by this assumption. Note however that without this assumption the argument seems to
be true but very long that we wish to avoid.

• k || |S|, when k P tp2q, pq2, p2, q2, pq, p, q, 1u. If p2q2 ď r , then by Corollary 3.4 we either have that
the spectral set S is a tile or r | |S|, which leads to a contradiction.

• r || |S|. Suppose first that Φp2q2r | mS , hence the cube rule holds for every cube in every Zpqr coset
(that can be identified with Zpqr) in Zp2q2r.

We can show that S is the union of Zr cosets and then S is a tile. Now we can directly refer to the
proof of [24, Lemma 3.5], but for the sake of completeness we present a short argument for this fact.

Claim 3.5. Let n “ pkqlrm and S Ă Zn be a spectral set. Suppose further that Φn | mS and Φp ∤ mΛ,
Φq ∤ mΛ. Then S is the union of Zr cosets and hence S is a tile.

Proof. We distinguish two cases. Either there are x P S and y R S and they belong to the same Zr

coset, or S is the union of Zr cosets and then Lemma 2.2 implies that S is a tile. Thus we only have
to consider the former case.

Let u ‰ x, where u is on the same Zp coset as x and v ‰ x be an element of the Zq coset containing x.
Since Φp ∤ mΛ, Φq ∤ mΛ, it follows that u, v R S. Otherwise, if for instance u P S, then p || x ´ u would
imply Φp | mΛ and then p | |S|, a contradiction.

In this case the cube-rule implies that the diagonal element s of the cube built on the vertices x, y, u, v
belongs to S. Since the choice of u (resp. v) was arbitrary on the Zp (resp. Zq) coset containing x,
this implies the diagonal elements of such cubes belong to S. At least one of the primes p and q is
larger than 2, so there are elements s1, s2 P S such that either p || s1 ´ s2 or q || s1 ´ s2 implying that
p | |S| or q | |S| as above, a contradiction.
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Now we assume that Φp2q2r | mΛ then repeating the same argument for Λ using the fact that pΛ, Sq is
also a spectral pair, we get that Λ is a tile. Hence r “ |S| “ |Λ| and Φr | mΛ guarantees that S is a
system of coset representatives of the Zp2q2 cosets in Zp2q2r. Hence S is a tile.

From now on, we may assume Φp2q2r ∤ mS and Φp2q2r ∤ mΛ. Then Lemma 2.5 gives that Φp2q2 | mS so
the projection of S to Zp2q2 is the sum of Zp and Zq cosets.

Further since Φp2q2r ∤ mΛ, if x, y P S with p ∤ x ´ y and q ∤ x ´ y, then r | x ´ y. Therefore if there is
such a pair in S, then for all elements x1 P SXpZpqr `xq we have r | x´x1, i.e., all such x1 P SXZpqr `x
contained in the same Zpq coset as x.

As the projection of S to Zp2q2 is the sum of Zp cosets and Zq cosets, the same is true in S X pZpqr `xq

by the property that all element of x1 P S X pZpqr ` xq we have that r | x ´ x1. As S is a set we obtain
that x and x1 are contained in a Zp coset or a Zq coset, when p | |S| or q | |S|, respectively. Both of
these contradict the assumption that r || |S|.

If there is no pair of elements x, y P S with p ∤ x ´ y and q ∤ x ´ y, then it can be easily checked that
S is contained in a proper subgroup of Zp2q2r. Then by Lemma 2.1.2 we get that S is a tile.

• pr || |S| or qr || |S|. As the role of p and q is symmetric, it is enough to handle the case pr || |S|.

Clearly, in this case Φq ∤ mS , Φq2 ∤ mS and Φq ∤ mΛ, Φq2 ∤ mΛ.

Now we project S to Zp2r. This projection S̄ is a set, otherwise there are points of S in the same Zq2

coset, implying Φq | mΛ or Φq2 | mΛ. Then q | |Λ| “ |S| leads to a contradiction.

Since the projection is a set we have |S| ď p2r, but as p2r ∤ S, we get |S| ă p2r. Since pr || |S| there
is a Zp2 coset in Zp2r containing at least p elements of S̄.

Assume first that there is a Zp2 coset containing at least p`1 element of S̄, i.e., there exists an x P Zp2r

so that |S̄ X pZp2 ` xq| ě p ` 1. (Note that the same holds for each Zp2 coset, since Φr | mS .)

As S̄ is a projection to Zp2r, we get that either Φp | mΛ or Φpq | mΛ or Φpq2 | mΛ, and similarly, either
Φp2 | mΛ or Φp2q | mΛ or Φp2q2 | mΛ.

It also follows from r ą p and Φr | mS̄ and our assumption that each Zp2 coset contains more than
p elements of S̄ that either Φpr | mΛ or Φpqr | mΛ or Φpq2r | mΛ. Similarly, either Φp2r | mΛ or
Φp2qr | mΛ or Φp2q2r | mΛ.

This implies that
Φp | mΛ, Φp2 | mΛ, Φr | mΛ, Φpr | mΛ, Φp2r | mΛ (5)

in the polynomial ring Zqrxs{pxn ´ 1q by Lemma 2.3.

If every one of the divisibility relations in (5) hold, then we can applying Lemma 2.4 and we get that
|S| “ kp2r ` lq, for some nonnegative integers k, l P N. Clearly, k ă 1, as |S| ă p2r. Thus k “ 0, but
then q | |S|, a contradiction.

Therefore it remains to handle following case. There is a Zp2 coset in Zp2r containing exactly p elements
of S̄. As pr || |S| and each Zp2 coset contains the same amount of elements of S̄ which is p, so we have
|S| “ pr. Moreover, we may assume that at least one of the relations of (5) fails in Zqrxs{pxn ´ 1q.

If Φp ∤ mΛ in Zqrxs, then Φp ∤ mΛ and Φpq ∤ mΛ and Φpq2 ∤ mΛ. In this case each Zp coset of Zp2r

contains exactly one element of S̄ and hence S is a tile.

If Φ2
p ∤ mΛ in Zqrxs, then Φp2 ∤ mΛ and Φp2q ∤ mΛ and Φp2q2 ∤ mΛ. Now every element of S is contained

in a Zpq2r coset, when we are done by Lemma 2.1. So at least one of these polynomial divisibility
conditions holds.

If Φpr ∤ mΛ in Zqrxs, then Φpr ∤ mΛ and Φprq ∤ mΛ and Φprq2 ∤ mΛ. Again we get that each Zpr coset
contains at most p elements of S̄ that are in one Zp coset. It follows that |S| ď p2 ă pr, a contradiction.

Assume finally Φp2r ∤ mΛ in Zqrxs. Using Lemma 2.5 we get that Φp2r | mΛ or Φp2qr | mΛ or
Φp2q2r | mΛ. Lemma 2.3 leads to Φp2r | mΛ in Zqrxs in any of these cases, a contradiction.
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Φp | mΛ or Φpq | mΛ or Φpq2 | mΛ ùñ Φp | mΛ in Zqrxs{pxn ´ 1q

Φpr | mΛ or Φpqr | mΛ or Φpq2r | mΛ ùñ Φpr | mΛ in Zqrxs{pxn ´ 1q

Φp2 | mΛ or Φp2q | mΛ or Φp2q2 | mΛ ùñ Φp2 | mΛ in Zqrxs{pxn ´ 1q

Φp2r | mΛ or Φp2qr | mΛ or Φp2q2r | mΛ ùñ Φp2r | mΛ in Zqrxs{pxn ´ 1q

Table 1: System of divisibility relations

• pqr || |S|. Suppose that |S| “ upqr for some 0 ‰ u P N, where gcdpu, pqrq “ 1. Now have that Φr | mS

and Φr | mΛ. The following table describes the main strategy of the proof.

Case 1. If for each line of Table 1 at least one divisibility of the polynomials holds, then

Φr | mΛ,Φp | mΛ,Φpr | mΛ,Φp2 | mΛ,Φp2r | mΛ in Zqrxs{pxn ´ 1q.

Hence, by Lemma 2.4 we obtain that

|S| “ upqr “ kp2r ` lq,

where k and l are nonnegative natural numbers. Equivalently, kp2r “ upqr ´ lq, which implies that
k | q.

If k ą 0, then |S| ě p2qr. If there is Zq2 coset containing more than q points of S, then ΦqΦq2 | mS so
q2 | |S|, a contradiction. As |S| ě p2qr we have that each Zq2 coset contains exactly q elements of S.
In other words we cannot have ΦqΦq2 | mΛ. Therefore in each Zq2 coset of Zp2q2r the set S is either a
system a coset representatives of Zq, or in each Zq2 coset S is a Zq coset. In both cases, S is a tile.

If k “ 0, then the intersection of S with each Zq2 coset is either empty or of cardinality q since none
of the Zq2 can contain more than q elements of S. The same argument gives that S has a very rigid
structure. For each Zq2 coset, either there is no point in that coset, or it contain exactly q elements of
S. In the latter case, either S is a Zq coset in that Zq2 coset, or a full Zq coset representative system
in Zq2 . Moreover, for each Zq2 coset that intersects S non-trivially the same holds from these two
options. Indeed, we cannot have a Zq2 coset containing a Zq coset full of the elements of S and another
one having q elements of S as coset representatives since we would again get ΦqΦq2 | mS . If the set is
union of Zq cosets then we are done by Lemma 2.2. Therefore we may assume that if S intersects a
Zq2 coset, then it is a system of full Zq coset representatives in that coset.

Now we assume that the same is true if we change the role of p and q. Therefore if there are points of
S on a given Zp2 coset, then they form a system Zp coset representatives.

Now for a given point first we take the full Zq coset representatives system belongs to S and for each
of its point we take the corresponding Zp coset representative system. This subsystem of S contains
at most one point in each Zpq coset. Moreover, if a Zpq coset in a Zp2q2 coset contains k elements of
S, then this Zp2q2 coset contains k complete set of coset representatives for Zpq cosets. In particular
we obtain Φq2Φp2 | mΛ.

Suppose that |S| “ pqr, then since Φr | mS each Zpq coset contains exactly one element of S. Then S
is a tile with a tiling complement Zp ˆ Zq.

Now we assume that |S| ą pqr. Since Φr | mS , this implies that all Zp2q2 cosets contain at least two
full systems of coset representatives of Zpq. This implies that Φp2q2r | mS and the cube-rule holds for
all Zpqr cosets. As Φq2Φp2 | mΛ, and p2 ∤ |S|, q2 ∤ |S| we get that Φp ∤ mΛ,Φq ∤ mΛ.

Then by Claim 3.5 (see also [24, Lemma 3.5]), S is the union of Zr cosets and by Lemma 2.2, S is a
tile.

Case 2. There is a ’line’ of Table 1, for which none of the conditions hold.

The following fact we use frequently in the sequel. As p2 ∤ |S| we have that ΦpΦp2 ∤ mΛ This means
that S has at most p elements in each Zp2 cosets. Similarly, q2 ∤ |S| implies that ΦqΦq2 ∤ mΛ. Hence,
S has at most q elements in each Zq2 coset.

Since there is at least one ’line’ of Table 1, for which none of the conditions hold, we distinguish 4
cases.
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1. Φp ∤ mΛ,Φpq ∤ mΛ and Φpq2 ∤ mΛ. These conditions imply that in each Zpq2 coset at most one
Zq2 coset may contain elements of S. As each Zq2 coset contains at most q elements of S, we get
that each Zpq2 coset contains at most q elements of S. This implies that each Zp2q2 coset contains
at most pq elements and Zp2q2r contains at most pqr. As pqr | |S| we have |S| “ pqr.

We obtain that each Zpq2 coset contains exactly one Zq2 coset having q elements of S. Since
q2 ∤ |S| we have that S is a tile.

2. Φpr ∤ mΛ, Φprq ∤ mΛ and Φprq2 ∤ mΛ.

In this case 0 P S XZprq2 Ă Zpq2 XZq2r. It follows from the conditions that S XZpq2r `x is either
a subset of a Zpq2 coset, when S XZpq2r ` x has at most pq elements, or S XZpq2r ` x is a subset
of Zq2r coset and then S has at most qr elements, for every x P Zp2q2r. All in all we get that

|S| ď lpq ` pp ´ lqqr,

where l ď p denotes the number of Zpq2r cosets in which S is contained in a Zpq2 coset. As
|S| “ kpqr for some gcdpk, pqrq “ 1 and p ă r, we get that kpqr ď lpq` pp´ lqqr ď pqr. Equality
holds if and only if k “ 1 and l “ 0 and each Zpq2r coset contains exactly qr elements of S
located in a Zq2r coset. Further using the fact that q2 ∤ |S|, this gives a structural description of
S implying that S is a tile.

3. Φp2 ∤ mΛ, Φp2q ∤ mΛ and Φp2q2 ∤ mΛ. The proof in this case is similar to the one of Case 1. Now
S intersects each Zp2q2 coset in at most one Zpq2 coset. As before, in each Zq2 coset S has at
most q elements. Hence a Zpq2 coset as well as each Zp2q2 coset contains at most pq elements of
S. Finally, this with pqr || |S| implies that S has exactly pqr elements in G and each Zq2 coset
that intersects S nontrivially contains exactly q elements of S. Furthermore, since |S| “ pqr, we
also get that S intersects each Zp2q2 coset in exactly one Zpq2 coset and S has exactly pq elements
in that coset (exactly q elements in each Zq2 coset of it). Since q2 ∤ |S| we have that in each Zq2

cosets of those Zpq2 cosets that intersects S nontrivially, S is either a Zq coset or in each of them S
is a coset representative of the Zq cosets. Both indicates that S is a tile. Indeed, in both cases, for
all x P Zp2q2r if S X pZq2 `xq ‰ H, then the sets pS ´xq XZq2 have a common tiling complement
T in Zq2 . Hence, S1 “ S ` T covers once those Zpq2 cosets which has nonempty intersection with
S. This means that S1 contains exactly one Zpq2 coset from each Zp2q2 coset. Therefore, it is
clear that there exists a T 1 such that pZpq2 ` x1q ` T 1 “ pZp2q2 ` x1q for all x1 P S1. Since S1 has
intersection with all Zp2q2 cosets, this implies that Zp2q2r “ S1 `T 1 “ pS`T q`T 1 “ S`pT `T 1q.
Thus S tiles Zp2q2r.

4. Φp2r ∤ mΛ, Φp2qr ∤ mΛ and Φp2q2r ∤ mΛ.

The assumptions contradict Lemma 2.5.
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4 Appendix

The main purpose of the Appendix is to prove Proposition 4.2. In order to do that we consider the following
statement.

Lemma 4.1. Let S be a subset of Zpn .
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• Assume pS ´ Sqzt0u has k elements of mutually different orders, then S has at least pk elements.

• Assume pS ´Sqzt0u has k elements of mutually different orders and |S| “ pk. Identify the elements of
Zpn with t0, 1, . . . , pn´1u. Write all these integers in base p. Then there is a subset AS of t0, 1, . . . , n´1u

such that the elements of S have the same i’th coordinate for every i P t0, 1, . . . , n ´ 1uzAS and can
have arbitrary value at the coordinates indexed by the elements of AS .

Proof. It is clear that the order of the difference of two elements of Zpn only depends on the coordinate the
two numbers differ when we write them in base p. Thus we have k coordinates where these numbers can
differ. After the last one these coordinates they all need to coincide.

In the last coordinate where they can differ, the elements of S can clearly have at most p different values.
Using simple inductive argument for the remaining coordinates proves both statements.

Proposition 4.2. Let pS,Λq be a spectral pair such that |G|

gcdp|G|,|S|q
“ pk for some prime p and k P N, then

S is a tile.

Proof. Let |G| “ pnd, where n ě k and p ∤ d. By assumption |G| “ pk gcdp|G|, |S|q we get that pn´kd || |S|.
Let S̄ denote the multiset obtained as the projection of S on Zd. Then by pigeonhole principle there is an
element in Zd having multiplicity in S̄ at least pn´k. Hence there is a Zpn coset in G containing at least
pn´k points of S. This implies that at least n ´ k relations of the following system hold by Lemma 4.1

Φp | mΛ, Φp2 | mΛ, . . . Φpn | mΛ.

On the other hand, each relation Φpi | mΛ implies a p factor of |S|, hence if more then n ´ k relation holds,
then pn´k`1 | |S|, which is a contradiction. This implies that exactly n ´ k relation holds of the previous
system, and there are 0 ď i1, . . . , ik ď n such that Φpij ∤ mΛ for all j P t1, . . . , ku. This means that there

is no elements in S such that their difference is of order pij . Hence in all Zpn cosets of G there can be
at most pn´k elements of S. By cardinality reason, as pn´kd || |S|, all Zpn coset contains exactly pn´k

elements, hence S “ pn´kd. Moreover, one can see using the proof of Lemma 4.1 that these elements are
fully determined. This in turn implies that S is a tile of G.
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